Startseite Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication of random and aligned-oriented cellulose acetate nanofibers containing betamethasone sodium phosphate: structural and cell biocompatibility evaluations

  • Saba Saifoori , Mahshid Fallah-Darrehchi , Payam Zahedi EMAIL logo und Abdolmajid Bayandori Moghaddam
Veröffentlicht/Copyright: 15. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract:

The objective of this work was to prepare electrospun cellulose acetate (CA) nanofibers containing betamethasone sodium phosphate (BSP). Two different morphologies including random and aligned orientations were rationally designed to improve the performance of samples in in vitro experiments. By comparing the CA nanofibrous samples with randomly and aligned-oriented morphologies, the scanning electron microscopy images showed that the neat aligned-oriented nanofibers with an average diameter of 180±15 nm could be obtained using a high-speed rotating collector. Subsequently, the tensile test confirmed that the aligned CA nanofibers had higher mechanical properties than that of the randomly oriented ones. Moreover, the BSP release profile obtained by UV-vis spectrophotometry depicted that the aligned samples had an initial burst release of BSP followed by a slow penetration of the drug with a gentle slope during 72 h. Furthermore, the ultimate amounts of BSP released from the random and aligned CA nanofibers into the phosphate buffer solution were 63% and 53%, respectively. Finally, human adipose-derived mesenchymal stem cells were seeded on both aligned and random electrospun CA nanofibrous samples containing BSP. The thiazolyl blue and hematoxylin and eosin staining results showed that the BSP-loaded nanofibers with the aligned morphology provided the most suitable environment for the cells’ growth, viability, and proliferation.

References

[1] Ghasemnejad M, Ahmadi E, Mohamadnia Z, Doustgani A, Hashemikia S. Mat. Sci. Eng. C-Mater. 2015, 56, 223–232.10.1016/j.msec.2015.06.012Suche in Google Scholar PubMed

[2] Giahi M, Farajpour G, Taghavi H, Shokri S. Russ. J. Phys. Chem. A 2014, 88, 1241–1247.10.1134/S0036024414070164Suche in Google Scholar

[3] Ishihara T, Izumo N, Higaki M, Shimada E, Hagi T, Mine L, Ogawa Y, Mizushima Y. J. Control. Release 2005, 105, 68–76.10.1016/j.jconrel.2005.02.026Suche in Google Scholar PubMed

[4] Higaki M, Ishihara T., Izumo N, Takatsu M, Mizushima Y. Ann. Rheum. Dis. 2005, 64, 1132–1136.10.1136/ard.2004.030759Suche in Google Scholar PubMed PubMed Central

[5] Dhakate SR, Singla B, Uppal M, Mathur RB. Adv. Mater. Lett. 2010, 1, 200–204.10.5185/amlett.2010.8148Suche in Google Scholar

[6] Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N. J. Biomed. Mater. Res. B: Appl. Biomater. 2015, 103, 21–30.10.1002/jbm.b.33172Suche in Google Scholar PubMed

[7] Kai D, Jiang S, Low ZW, Loh XJ. J. Mater. Chem. B 2015, 3, 6194–6204.10.1039/C5TB00765HSuche in Google Scholar

[8] Sharma Y, Tiwari A, Hattori S, Terada D, Sharma AK, Ramalingam M, Kobayashi H. Int. J. Biol. Macromol. 2012, 51, 627–631.10.1016/j.ijbiomac.2012.06.014Suche in Google Scholar PubMed

[9] Konwarh R, Karak N, Misra M. Biotechnol. Adv. 2013, 31, 421–437.10.1016/j.biotechadv.2013.01.002Suche in Google Scholar PubMed

[10] Saranya R, Arthanareeswaran G, Ismail AF, Dionysiou DD, Paul D. RSC Adv. 2015, 5, 62486–62497.10.1039/C5RA06948CSuche in Google Scholar

[11] Saranya R, Thuyavan YL, Arthanareeswaran G. J. Teknol. 2014, 70, 1–5.10.11113/jt.v70.3425Suche in Google Scholar

[12] Barnthip N, Muakngam A. J. Bionanosci. 2014, 8, 313–318.10.1166/jbns.2014.1240Suche in Google Scholar

[13] Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Carbohydr. Polym. 2014, 102, 884–892.10.1016/j.carbpol.2013.10.070Suche in Google Scholar PubMed

[14] Omollo E, Zhang C, Mwasiagi JI, Ncube S. J. Ind. Text. 2016, 45, 716–729.10.1177/1528083714540696Suche in Google Scholar

[15] Wen D, Jianhui W, Bing P, Xiaobin Z, Fuwei X, Huimin L, Kejun Z. Contribut. Tobacco Res. 2015, 26, 232–240.10.1515/cttr-2015-0011Suche in Google Scholar

[16] Taepaiboon P, Rungsardthong U, Supaphol P. Eur. J. Pharm. Biopharm. 2007, 67, 387–397.10.1016/j.ejpb.2007.03.018Suche in Google Scholar PubMed

[17] Tidjarat S, Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. J. Chromatogr. A 2014, 1367, 141–147.10.1016/j.chroma.2014.09.043Suche in Google Scholar PubMed

[18] Ren X, Chen D, Meng X, Tang F, Du A, Zhang L. Colloid. Surface. B 2009, 72, 188–192.10.1016/j.colsurfb.2009.04.003Suche in Google Scholar PubMed

[19] Suwantong O, Supaphol P. Applications of Cellulose Acetate Nanofiber Mats, Springer: Heidelberg, 2015, p 355–368.10.1007/978-3-642-45232-1_70Suche in Google Scholar

[20] Cardea S, Scognamiglio M, Reverchon E. Mat. Sci. Eng. C-Mater. 2016, 59, 480–487.10.1016/j.msec.2015.10.053Suche in Google Scholar PubMed

[21] Zhao Y, Zhu X, Liu H, Luo Y, Wang S, Shen M, Zhu M, Shi X. J. Mater. Chem. B 2014, 2, 7384–7393.10.1039/C4TB01278JSuche in Google Scholar

[22] Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif. Organs 2008, 32, 388–397.10.1111/j.1525-1594.2008.00557.xSuche in Google Scholar PubMed

[23] Goonoo N, Bhaw-Luximon A, Rodriguez IA, Wesner D, Schönherr H, Bowlin GL, Jhurry D. Biomater. Sci-UK 2014, 2, 339–351.10.1039/C3BM60211GSuche in Google Scholar

[24] Hodde D, Gerardo-Nava J, Wöhlk V, Weinandy S, Jockenhövel S, Kriebel A, Altinova H, Steinbusch HWM, Möller M, Weis J. Eur. J. Neurosci. 2016, 43, 376–387.10.1111/ejn.13026Suche in Google Scholar PubMed

[25] Tung WT, Tam KW, Chan YS, Kwok LF. Use of Schwann Cell-Seeded Nanofiber as Nerve Conduit. 3D Cell Culture 2014 – Advanced Model Systems, Applications & Enabling Technologies: Freiburg, Germany, 2014.Suche in Google Scholar

[26] Prabhakaran MP, Tian L, Hu J, Chen M, Besenbacher F, Ramakrishna S. RSC Adv. 2015, 5, 49838–49848.10.1039/C5RA05773FSuche in Google Scholar

[27] Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S. Colloid. Surface. B 2015, 134, 346–354.10.1016/j.colsurfb.2015.07.019Suche in Google Scholar PubMed

[28] Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S. J. Biomater. Appl. 2014, 28, 909–921.10.1177/0885328213486527Suche in Google Scholar PubMed

[29] Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomás H, Zhu M. Carbohydr. Polym. 2013, 91, 419–427.10.1016/j.carbpol.2012.08.069Suche in Google Scholar PubMed

[30] Andalib MN, Lee JS, Ha L, Dzenis Y, Lim JY. Biochem. Biophys. Res. Commun. 2016, 473, 920–925.10.1016/j.bbrc.2016.03.151Suche in Google Scholar PubMed PubMed Central

[31] Chew SY, Mi R, Hoke A, Leong KW. Biomaterials 2008, 29, 653–661.10.1016/j.biomaterials.2007.10.025Suche in Google Scholar PubMed PubMed Central

[32] Hom S, O’Hara J, Yin W, Rubenstein D. FASEB J. 2015, 29, 792.10.1096/fasebj.29.1_supplement.792.2Suche in Google Scholar

[33] Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Polymers 2016, 8, 54.10.3390/polym8020054Suche in Google Scholar PubMed PubMed Central

[34] Meng ZX, Zheng W, Li L, Zheng YF. Mater. Chem. Phys. 2011, 125, 606–611.10.1016/j.matchemphys.2010.10.010Suche in Google Scholar

[35] Mirzaei E, Ai J, Ebrahimi-Barough S, Verdi J, Ghanbari H, Faridi-Majidi R. Mol. Neurobiol. 2015, 53, 4798–4808.10.1007/s12035-015-9410-0Suche in Google Scholar PubMed

[36] Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Carbohydr. Polym. 2016, 140, 104–112.10.1016/j.carbpol.2015.12.012Suche in Google Scholar PubMed

[37] Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I. J. Appl. Polym. Sci. 2015, 132, 41286.10.1002/app.41286Suche in Google Scholar

[38] Sebe I, Kallai-Szabo B, Zelko R, Szabo D. Curr. Med. Chem. 2015, 22, 604–617.10.2174/0929867321666141106105502Suche in Google Scholar PubMed

[39] Shojaei A, Read S, Couch RA, Hodgkins P. Controlled dose drug delivery system. 2014, US8846100 B2.Suche in Google Scholar

[40] Tungprapa S, Jangchud I, Supaphol P. Polymer 2007, 48, 5030–5041.10.1016/j.polymer.2007.06.061Suche in Google Scholar

[41] Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Polymer 2007, 48, 7546–7557.10.1016/j.polymer.2007.11.019Suche in Google Scholar

[42] Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP. Int. J. Pharm. 2011, 409, 216–228.10.1016/j.ijpharm.2011.02.004Suche in Google Scholar PubMed

[43] Yu DG, Yu JH, Chen L, Williams GR, Wang X. Carbohydr. Polym. 2012, 90, 1016–1023.10.1016/j.carbpol.2012.06.036Suche in Google Scholar PubMed

[44] Gouda M, Hebeish AA, Aljafari AI. J. Ind. Text. 2014, 43, 319–329.10.1177/1528083713495250Suche in Google Scholar

[45] Castillo-Ortega MM, Nájera-Luna A, Rodríguez-Félix DE, Encinas JC, Rodríguez-Félix F, Romero J, Herrera-Franco PJ. Mat. Sci. Eng. C-Mater. 2011, 31, 1772–1778.10.1016/j.msec.2011.08.009Suche in Google Scholar

[46] Absar S, Khan M, Edwards K, Neumann J. J. Polym. Eng. 2015, 35, 867–878.10.1515/polyeng-2015-0057Suche in Google Scholar

[47] Zahedi P, Rafie A, Wojczak E. Indian J. Fibre Text. Res. 2016, 41, 13–18.Suche in Google Scholar

[48] Vaz C, Van Tuijl S, Bouten C, Baaijens F. Acta Biomater. 2005, 1, 575–582.10.1016/j.actbio.2005.06.006Suche in Google Scholar PubMed

[49] Fennessey SF, Farris RJ. Polymer 2004, 45, 4217–4225.10.1016/j.polymer.2004.04.001Suche in Google Scholar

Received: 2016-4-14
Accepted: 2017-2-1
Published Online: 2017-3-15
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0134/html?lang=de
Button zum nach oben scrollen