Startseite Study on the deformation behavior of polyamide under the backward extrusion process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the deformation behavior of polyamide under the backward extrusion process

  • Babak Manafi EMAIL logo , Mehdi Saeidi , Vahid Shatermashhadi , Karen Abrinia und Ghader Faraji
Veröffentlicht/Copyright: 26. Februar 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study explores the deformation behavior of polyamide in the process of backward extrusion at room temperature by both finite element (FE) and design of experiment (DOE) procedures. The distributions of effective strain through the length and the thickness of processed polyamide tube by cold backward extrusion are investigated and compared with ductile metals. The die parameters are comprised of slope angle, corner radius of punch and container which are selected as input parameters. The Taguchi DOE approach is exploited in order to decrease repeated simulations, after which 16 results are carried out. Analysis of variance is performed on simulation results, and it is proved that the corner radius of punch has the greatest effect among die parameters in the mentioned process, in reducing the processing load. The influence of this parameter is obtained as 98%. Eventually, the optimum condition is proposed. Also, the deformation behavior and the probability of failure based on the normalized Cockroft-Latham criterion are studied under this condition.


Corresponding author: Babak Manafi, Department of Aerospace and Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran, e-mail:

References

[1] Barišić B, Car Z, Ikonić M. Metalurgija 2008, 47, 313–316.10.1111/j.1468-2311.2008.00524.xSuche in Google Scholar

[2] ASM Handbook, Forming and Forging, 9th ed., Vol. 14, ASM International: Ohio, 1988.Suche in Google Scholar

[3] Bakhshi-Jooybari M, Saboori M, Hosseinipour S, Shakeri M, Gorji A. J. Mater. Process. Technol. 2006, 177, 596–599.10.1016/j.jmatprotec.2006.03.194Suche in Google Scholar

[4] Uyyuru RK, Valberg H. J. Mater. Process. Technol. 2006, 172, 312–318.10.1016/j.jmatprotec.2005.09.024Suche in Google Scholar

[5] Saboori M, Bakhshi-Jooybari M, Noorani-Azad M, Gorji A. J. Mater. Process. Technol. 2006, 177, 612–616.10.1016/j.jmatprotec.2006.04.031Suche in Google Scholar

[6] Abrinia K, Orangi S. J. Mater. Eng. Perform. 2009, 18, 1201–1208.10.1007/s11665-009-9364-3Suche in Google Scholar

[7] Orangi S, Abrinia K, Bihamta R. J. Mater. Eng. Perform. 2011, 20, 40–47.10.1007/s11665-010-9655-8Suche in Google Scholar

[8] Javanmard S, Daneshmand F, Moshksar M, Ebrahimi R. Iran. J. Sci. Technol. Trans. B 2011, 35, 167–180.Suche in Google Scholar

[9] Milutinović M, Vilotić D, Randelović S, Plančak M, Skakun P. 16th International Research/Expert Conference, 10–12 September 2012, Dubai, UAE.Suche in Google Scholar

[10] Martins P, Kwiatkowski L, Franzen V, Tekkaya A, Kleiner M. CIRP Ann. Manuf. Technol. 2009, 58, 229–232.10.1016/j.cirp.2009.03.095Suche in Google Scholar

[11] Alves L, Martins P. Int. J. Adv. Manuf. Technol. 2009, 44, 26–37.10.1007/s00170-008-1805-xSuche in Google Scholar

[12] Alves L, Martins P. J. Mater. Process. Technol. 2009, 209, 4229–4236.10.1016/j.jmatprotec.2008.11.015Suche in Google Scholar

[13] Alves L, Martins P. J. Mater. Eng. Perform. 2010, 19, 1276–1283.10.1007/s11665-010-9633-1Suche in Google Scholar

[14] Silva M, Alves L, Martins P. Eur. J. Mech. A. Solids 2010, 29, 557–566.10.1016/j.euromechsol.2010.03.008Suche in Google Scholar

[15] Qiu J, Murata T, Wu X, Kitagawa M, Kudo M. J. Mater. Process. Technol. 2012, 212, 1528–1536.10.1016/j.jmatprotec.2012.02.015Suche in Google Scholar

[16] Caddell RM, Bates Jr T, SY Yeh G. Mater. Sci. Eng. 1972, 9, 223–229.10.1016/0025-5416(72)90037-7Suche in Google Scholar

[17] Whitney W, Andrews R. J. Polym. Sci., Part C: Polym. Symp. 1967, 16, 2981–2990.10.1002/polc.5070160552Suche in Google Scholar

[18] Sternstein S, Ongchin L. Polym. prepr. 1969, 10, 1117–1124.Suche in Google Scholar

[19] Raghava R, Caddell RM, Yeh GS. J. Mater. Sci. 1973, 8, 225–232.10.1007/BF00550671Suche in Google Scholar

[20] Lee CS, Caddell RM, Yeh GS. Mater. Sci. Eng. 1972, 10, 241–248.10.1016/0025-5416(72)90095-XSuche in Google Scholar

[21] Ngaile G, Altan T. In Proc. 3rd JSTP International Seminar on Precision Forging, Nagoya, Japan: Mar, 2004, pp. 21–30.Suche in Google Scholar

[22] Bonte M, Van den Boogaard A, Huétink J. Struct. Multidiscip. Optim. 2008, 35, 571–586.10.1007/s00158-007-0206-3Suche in Google Scholar

[23] Jurkovic Z, Jurkovic M, Buljan S. J. Achiev. Mater. Manuf. Eng. 2006, 17, 353–356.Suche in Google Scholar

[24] Al-Momani E, Rawabdeh I. JJMIE 2008, 2, 53–63.Suche in Google Scholar

[25] Oehlert GW. A First Course in Design and Analysis of Experiments, WH Freeman: New York, 2000.Suche in Google Scholar

[26] Shatermashhadi V, Manafi B, Abrinia K, Faraji G, Sanei M. Mater. Des. 2014, 62, 361–366.10.1016/j.matdes.2014.05.022Suche in Google Scholar

[27] Wang H, Lin M, Zhu M, Pan W, Li W. J. Magn. Magn. Mater. 2012, 324, 1791–1794.10.1016/j.jmmm.2011.12.040Suche in Google Scholar

[28] Kvačkaj T, Kočiško R, Tiža J, Bidulská J, Kováčová A, Bidulský R, Bacso J, Vlado M. Arch. Metall. Mater. 2013, 58, 407–412.10.2478/amm-2013-0008Suche in Google Scholar

[29] Yoon SC, Bok CH, Seo MH, Kim T-S, Kim HS. Stress 2008, 20, 60.Suche in Google Scholar

[30] Tzou G, Wu T, Yeh M. In ICF12, Ottawa 2009, 2013.Suche in Google Scholar

[31] Wang F-j, Shuang Y-h, Hu J-h, Wang Q-h, Sun J-c. J. Mater. Process. Technol. 2014, 214, 1597–1604.10.1016/j.jmatprotec.2014.03.002Suche in Google Scholar

[32] Dai Q, Zhang D, Lan W, Fang L, Zhang J. Acta Metall, Sin (Engl Lett) 2010, 23, 154–160.Suche in Google Scholar

[33] Gouveia B, Rodrigues J, Martins P. J. Mater. Process. Technol. 2000, 101, 52–63.10.1016/S0924-0136(99)00449-5Suche in Google Scholar

[34] Kada O, Ioda M, Yanagi H. SHINNITTETSU GIHO 2007, 386, 59.Suche in Google Scholar

[35] Hu H, Zhang D, Pan F, Yang M. Acta Metall. Sinica 2009, 22, 353–364.10.1016/S1006-7191(08)60109-XSuche in Google Scholar

[36] Xia Y-F, Quan G-Z, Zhou J. Trans. Nonferrous Met. Soc. China 2010, 20, s580–s583.10.1016/S1003-6326(10)60542-0Suche in Google Scholar

[37] Manafi B, Saeidi M. Elixir Mech. Engg. 2014, 76, 28487–28492.Suche in Google Scholar

[38] Yonan SA, Silva M, Martins P, Tekkaya A. Express Polym. Lett. 2014, 8, 301–311.10.3144/expresspolymlett.2014.34Suche in Google Scholar

[39] Mai Y-W, Cotterell B. Int. J. Fract. 1986, 32, 105–125.10.1007/BF00019787Suche in Google Scholar

[40] Vu-Khanh T. Polymer 1988, 29, 1979–1984.10.1016/0032-3861(88)90170-XSuche in Google Scholar

[41] Hosford WF, Caddell RM. Metal Forming, Prentice Hall: New Jersey, 1993.Suche in Google Scholar

[42] Bhadauria SS, Hora M, Pathak K. J. Solid Mech. 2009, 1, 226–232.Suche in Google Scholar

Received: 2014-8-31
Accepted: 2015-1-13
Published Online: 2015-2-26
Published in Print: 2015-9-1

©2015 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2014-0246/pdf
Button zum nach oben scrollen