Abstract
Poly(aspartic acid) (PASP) hydrogel is a biodegradable and biocompatible polymer with high water absorbing ability. Traditionally, the production of PASP hydrogel consumes large amounts of organic solvents, i.e., dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). This traditional approach is now considered costly, complex and environmentally unfriendly due to required used solvent disposal. The present research explores two novel methods in preparing PASP hydrogel without organic solvent, by using hydrazine hydrate and ethylene glycol diglycidyl ether (EGDGE) or poly(ethylene glycol) diglycidyl ether (PEGDGE) as the cross-linkers. Absorbent ability and other characteristics are determined. Preparing PASP hydrogel in aqueous solution is promising and finds its use in many applications.
Acknowledgments
The authors express their thanks for the support from the National Basic Research Program of China (973 Program) (2013CB733600).
References
[1] Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ. Eur. Polym. J. 2003, 39, 1341–1348.10.1016/S0014-3057(02)00391-9Search in Google Scholar
[2] Liu J, Wang Q, Wang A. Carbohydr. Polym. 2007, 70, 166–173.10.1016/j.carbpol.2007.03.015Search in Google Scholar
[3] Mishra S, Usha Rani G, Sen G. Carbohydr. Polym. 2011, 10, 1–8.10.5121/ijdkp.2011.1501Search in Google Scholar
[4] Salam A, Pawlak JJ, Venditti RA, El-tahlawy K. Biomacromolecules 2010, 11, 1453–1459.10.1021/bm1000235Search in Google Scholar
[5] Lawal OS, Storz J, Storz H, Lohmann D, Lechner D, Kulicke W-M. Eur. Polym. J. 2009, 45, 3399–3408.10.1016/j.eurpolymj.2009.09.019Search in Google Scholar
[6] Chang C, He M, Zhou J, Zhang L. Macromolecules 2011, 44, 1642–1648.10.1021/ma102801fSearch in Google Scholar
[7] Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M. Polym. Adv. Technol. 2009, 20, 655–671.10.1002/pat.1395Search in Google Scholar
[8] Zhao Y, Su H, Fang L, Tan T. Polymer 2005, 46, 5368–5376.10.1016/j.polymer.2005.04.015Search in Google Scholar
[9] Fang L, Zhao Y, Tan T. J. Polym. Res. 2006, 13, 145–152.10.1007/s10965-005-9022-xSearch in Google Scholar
[10] Umeda S, Nakade H, Kakuchi T. Polym. Bull. 2011, 67, 1285–1292.10.1007/s00289-011-0493-0Search in Google Scholar
[11] Zrinyi M, Gyenes T, Juriga D, Kim J-H. Acta Biomater. 2012, 8, 1–10.Search in Google Scholar
[12] Gyarmati B, Vajna B, Nemethy A, Laszlo K, Szilagyi A. Macromol. Biosci. 2013, 10, 1–8.Search in Google Scholar
[13] Tomida M, Yabe M, Arakawa Y. Polymer 1997, 38, 2791–2795.10.1016/S0032-3861(97)85616-9Search in Google Scholar
[14] Kunioka M. Macromol. Biosci. 2004, 4, 324–329.10.1002/mabi.200300121Search in Google Scholar
[15] Wang Y, Xue M, Wei J, Li C, Zhang R, Cao H, Yang J, Tan T. RSC Adv. 2012, 2, 11592–11600.10.1039/c2ra20661gSearch in Google Scholar
[16] Zhang X, You Q, Xu H, Liu X, Ouyang P. Polym. Mater. Sci. Eng. (Chinese) 2003, 19, 203–205.Search in Google Scholar
[17] Li H, Zhun H. Jiangsu Chem. Ind. (Chinese) 2006, 24, 12–14.10.1002/cjoc.200690333Search in Google Scholar
[18] Ho G-H, Yang T-H, Yang K-H. US Patent: 7759088 B2, Jul. 20, 2010.Search in Google Scholar
[19] Chang C-J, Swift G. US Patent: 5955549, Sep. 21, 1999.Search in Google Scholar
[20] Min SK, Kim H, Kim J-H. J. Ind. Eng. Chem. 2000, 6, 276–279.Search in Google Scholar
[21] GB/T 16886.5-2003. Biological Evaluation of Medical Devices-Part 5:In vitro cytotoxicity test[S]. 2003.Search in Google Scholar
[22] GB/T 16886.10-2005. Biological Evaluation of Medical Devices-Part 10:Tests for irritation and skin sensitization[S]. 2003.Search in Google Scholar
[23] Son C-M, Jeon YS, Kim J-H. Polymer (Korea) 2011, 35, 558–564.10.7317/pk.2011.35.6.558Search in Google Scholar
[24] Sun S, Cao H, Tan T. Polym. Bull. 2009, 62, 699–711.10.1007/s00289-009-0048-9Search in Google Scholar
[25] Pitarresi G, Cavallaro G, Carlisi B, Giammona G, Bulone D, San Biagio PL. Macromol. Chem. Phys. 2000, 201, 2542–2549.10.1002/1521-3935(20001101)201:17<2542::AID-MACP2542>3.0.CO;2-ASearch in Google Scholar
[26] Pitarresi G, Saiano F, Cavallaro G, Mandracchia D, Palumbo FS. Int. J. Pharm. 2007, 335, 130–137.10.1016/j.ijpharm.2006.11.012Search in Google Scholar
[27] Li L, Wu J, Zhao M, Wang Y, Zhang H, Zhang X, Gui L, Liu J, Mair N, Peng S. Chem. Res. Toxicol. 2012, 25, 1948–1954.10.7312/li--16274-026Search in Google Scholar
[28] Zorc B, Lovric J, Jain MP, Moquin A, Cho SJ, Filipovic-Grcic J. J. Drug Del. Sci. Tech. 2009, 19, 139–144.10.1016/S1773-2247(09)50022-6Search in Google Scholar
[29] Jana NR, Erathodiyil N, Jiang J, Ying JY. Langmuir 2010, 26, 6503–6507.10.1021/la903965tSearch in Google Scholar PubMed
[30] Zhang H, Wang Y, Zhao M, Wu J, Zhang X, Gui L, Zheng M, Li L, Liu J, Peng S. Chem. Res. Toxicol. 2012, 25, 471–477.10.1021/tx2005037Search in Google Scholar
[31] Yang J, Wang F, Tan T. J. Appl. Polym. Sci. 2010, 117, 178–185.10.1002/app.31237Search in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/polyeng-2014-0275) offers supplementary material, available to authorized users.
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Review
- Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators
- Original articles
- Synthesis and properties of high temperature resistant and salt tolerant filtrate reducer N,N-dimethylacrylamide 2-acrylamido-2-methyl-1-propyl dimethyl diallyl ammonium chloride N-vinylpyrrolidone quadripolymer
- Preparation and characterization of non-isocyanate polyurethanes based on 2-hydroxy-6-naphthalenesulfonic acid as a monomer of the rigid phase
- Preparation of poly(aspartic acid) superabsorbent hydrogels by solvent-free processes
- Effect of carbon fiber surface modification on the flexural mechanical properties of carbon fiber reinforced polyetheretherketone biocomposites
- Analysis of the tensile properties of natural fiber and particulate reinforced polymer composites using a statistical approach
- Study on the deformation behavior of polyamide under the backward extrusion process
- High photoelectric PPV/PVA/Ag composite nanofibers by co-electrospinning
- Enhanced delivery of diclofenac diethylamine loaded Eudragit RL 100® transdermal system against inflammation
- Fabrication of hollow fiber microfiltration membrane from PVDF/DBP/DBS system via thermally induced phase separation process
Articles in the same Issue
- Frontmatter
- Review
- Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators
- Original articles
- Synthesis and properties of high temperature resistant and salt tolerant filtrate reducer N,N-dimethylacrylamide 2-acrylamido-2-methyl-1-propyl dimethyl diallyl ammonium chloride N-vinylpyrrolidone quadripolymer
- Preparation and characterization of non-isocyanate polyurethanes based on 2-hydroxy-6-naphthalenesulfonic acid as a monomer of the rigid phase
- Preparation of poly(aspartic acid) superabsorbent hydrogels by solvent-free processes
- Effect of carbon fiber surface modification on the flexural mechanical properties of carbon fiber reinforced polyetheretherketone biocomposites
- Analysis of the tensile properties of natural fiber and particulate reinforced polymer composites using a statistical approach
- Study on the deformation behavior of polyamide under the backward extrusion process
- High photoelectric PPV/PVA/Ag composite nanofibers by co-electrospinning
- Enhanced delivery of diclofenac diethylamine loaded Eudragit RL 100® transdermal system against inflammation
- Fabrication of hollow fiber microfiltration membrane from PVDF/DBP/DBS system via thermally induced phase separation process