Startseite Effect of the quenching temperature on the mechanical and thermophysical properties of polycarbonate pigmented with titanium dioxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of the quenching temperature on the mechanical and thermophysical properties of polycarbonate pigmented with titanium dioxide

  • Farid Rouabah EMAIL logo , Derradji Dadache , Magali Fois und Nacceredine Haddaoui
Veröffentlicht/Copyright: 20. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work deals with the effect of the quenching temperature on the mechanical and thermophysical properties of polycarbonate (PC) pigmented with titanium dioxide (TiO2). The thermal conductivity, thermal diffusivity, Izod impact strength and density measurements were measured. The thermal conductivity and diffusivity of the composites were measured using a periodic measurement method. It was found that an additional second quenching involved an increase in the value of the Izod impact strength near 35°C and a decrease in the values of the density, the thermal conductivity and the thermal diffusivity. A transition in these properties which is located at around 35°C has also been observed and linked to the β1 relaxation mode of PC.


Corresponding author: Farid Rouabah, Laboratoire de Physico-Chimie des Hauts Polymères(LPCHP), Université Ferhat Abbas, Sétif-1, 19000 Sétif, Algeria, e-mail:

References

[1] Blackwood KM, Pethrick RA, Simpson FI, Day RE, Watson CL. J. Mater. Sci. 1995, 30, 4435–4445.Suche in Google Scholar

[2] Hamamoto A, Tanaka T, Kinoshita M. J. Reinf. Plast. Compos. 2002, 21, 603–615.Suche in Google Scholar

[3] Han SM, Yang MJ, Gao WB, Tang MJ, Jiang L, Dan Y. J. Appl. Polym. Sci. 2009, 114, 3495–3500.Suche in Google Scholar

[4] Zhang J, Wang X, Lu L, Li D, Yang X. J. Appl. Polym. Sci. 2003, 87, 381–385.Suche in Google Scholar

[5] Rouabah F, Fois M, Ibos L, Boudenne A, Dadache D, Haddaoui N, Ausset P. J. Appl. Polym. Sci. 2007, 106, 2710–2717.Suche in Google Scholar

[6] Choy CL. Polym. 1977, 18, 977–1004.Suche in Google Scholar

[7] Novichenok LN, Ovchinnikova SM. J. Eng. Phys. Thermophys. 1982, 42, 648–651.Suche in Google Scholar

[8] Boudenne A, Ibos L, Gehin E, Candau Y. J. Physics D: Appl. Phys. 2004, 37, 132–139.Suche in Google Scholar

[9] Boudenne A, Ibos L, Candau Y. Meas. Sci. Technol. 2006, 17, 1870–1876.Suche in Google Scholar

[10] Rouabah F, Fois M, Ibos L, Boudenne A, Picard C, Dadache D, Haddaoui N. J. Appl. Polym. Sci. 2008, 109, 1505–1514.Suche in Google Scholar

[11] Vani SJ, Mohanty S, Parvaiz MR, Sanjay KN. Macromol. Res. 2011, 19, 563–572.Suche in Google Scholar

[12] DeVries KL, Hornberger LE. Polym. Degrad. Stab. 1989, 243, 213–240.Suche in Google Scholar

[13] Godovsky YK. Thermophysical Properties of Polymers, Springer: New York, 1992.10.1007/978-3-642-51670-2Suche in Google Scholar

[14] Rouabah F, Dadache D, Haddaoui N. ISRN Polym. Sci. 2012, 2012, 1–8.Suche in Google Scholar

[15] Daane JH, Matsuoka S. Polym. Eng. Sci. 1968, 8, 246–261.Suche in Google Scholar

[16] Akay A, Ozden S. J. Mater. Sci. 1995, 30, 3358–3368.Suche in Google Scholar

[17] Billmeyer W. Textbook of Polymer Science, 2nd ed., Wiley-Interscience: London, 1971.Suche in Google Scholar

Received: 2014-1-22
Accepted: 2014-4-23
Published Online: 2014-5-20
Published in Print: 2014-9-1

©2014 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2014-0021/pdf?lang=de
Button zum nach oben scrollen