Startseite Unique viscosity mutation of multi-generation hyperbranched waterborne polyurethane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unique viscosity mutation of multi-generation hyperbranched waterborne polyurethane

  • Heng Li , Yuhang Liu , Ning Sun , Zhaohua Xu EMAIL logo , Yibiao Li und Shaohua Jiang
Veröffentlicht/Copyright: 9. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Different generation hyperbranched polyurethanes (HBPUs) were synthesized through the A2+B’B2 strategy. The molecular structures and viscosity were characterized by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). The NMR results confirmed the formation of the branched units between the segments contained in the HBPU structure. The GPC with a four-capillary bridge design differential viscometer and the Ubbelohde viscometer showed a different viscosity. For the HBPUs, the viscosity first increased to higher values then decreased to lower values, and finally increased with increasing weight, which can be attributed to the spherical structure. The growth degree of HBPUs spherical structure depends on the forming hydrogen bonds; when the hydrogen bonds reach a certain degree, the spherical structure becomes compact.


Corresponding author: Zhaohua Xu, Department of Material Technology, Jiangmen Polytechnic, Jiangmen, 529090, P.R. China, e-mail:

Acknowledgments

This work was supported by the National Science Foundation of China with Grant no. 51302107, and by the Guangdong Province Department University Industry Cooperation project (Grants nos. 2012A090300004 and 2012B091000077).

References

[1] Chattopadhyay DK, Raju KVSN. Prog. Polym. Sci. 2007, 32, 352–418.Suche in Google Scholar

[2] Park JH, Bae SY, Kim BK. Polym. Bull. 2013, 70, 859–869.Suche in Google Scholar

[3] Vogtle F, Gestermann S, Hesse R, Schwierz H, Windisch B. Prog. Polym. Sci. 2000, 25, 987–1041.Suche in Google Scholar

[4] Gao C, Yan D. Prog. Polym.Sci. 2004, 29, 183–275.Suche in Google Scholar

[5] Cao Q, Liu PS. Euro. Polym. J. 2006, 42, 2931–2939.Suche in Google Scholar

[6] Sivakumar C, Nassar AS. Euro. Polym. J. 2009, 45, 2329–2337.Suche in Google Scholar

[7] Georg K, Céline T, Tuan QN, Christopher JGP, Månson JAE, Valeria C, Hamley IW, Sun F, Sheiko SS, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco MI, Klok H-A. Macromolecules 2006, 39, 4507–4516.10.1021/ma060548bSuche in Google Scholar

[8] Park JH, Kim BK. J. Polym. Sci., Polym.Chem. 2013, 51, 1255–1261.Suche in Google Scholar

[9] Sun N, Liu YH, Tong Z. Chem. J. Chinese. U. 2011, 32, 1639–1644.Suche in Google Scholar

[10] Hepburn C. Polyurethane Elastomers, Applied Science Publishers: New York, 1982, 290–294.Suche in Google Scholar

[11] Gao C, Yan DY. Macromolecules 2003, 36, 613–620.10.1021/ma021411ySuche in Google Scholar

[12] Abdelrehim M, Komber H, Langenwalter J, Voit B, Bruchmann B. J. Polym. Sci. Part A: Polym. Chem, 2004, 42, 3062–3081.10.1002/pola.20154Suche in Google Scholar

[13] Harekrishna Deka, Niranjan Karak. Prog. Org. Coat. 2009, 66, 192–198.Suche in Google Scholar

[14] Masato S, Atsuhiko I, Takeo S. Macromolecules 1992, 25, 7071–7072.10.1021/ma00051a055Suche in Google Scholar

Received: 2013-12-4
Accepted: 2014-4-11
Published Online: 2014-5-9
Published in Print: 2014-9-1

©2014 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0312/pdf?lang=de
Button zum nach oben scrollen