Home Effect of compatibilizing agents on the physical properties of iPP/HDPE organoclay blends
Article
Licensed
Unlicensed Requires Authentication

Effect of compatibilizing agents on the physical properties of iPP/HDPE organoclay blends

  • Samia Boufassa , R. Doufnoune , Abdelhak Hellati , Nacceredine Haddaoui and M. Esperanza Cagiao EMAIL logo
Published/Copyright: August 6, 2013
Become an author with De Gruyter Brill

Abstract

Blends of isotactic polypropylene (iPP) and high density polyethylene (HDPE), with and without compatibilizers and with different organoclay amounts (1%, 3%, and 5%), were systematically investigated to assess the effect of the additives on the crystallinity of the blends, as well as the correlation between the microhardness, H and the Young’s modulus E. The compatibilizers used were: maleic anhydride grafted styrene ethylene butadiene styrene (SEBS-g-MAH), maleic anhydride grafted polyethylene (PE-g-MAH), maleic anhydride grafted polypropylene (PP-g-MAH), ethylene propylene diene monomer (EPDM), and maleic anhydride grafted EPDM (EPDM-g-MAH). The thermal properties and crystallization behavior were determined by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). Macro- and micromechanical properties were also investigated. The results obtained showed that the addition of clay slightly increases the crystallinity αWAXS of the blends. However, the hardness H decreases enormously only by adding 1 wt% of clay. With higher clay amounts, H increases again. The relationship between the Young’s modulus E and the hardness H for all the studied blends was found to be somewhat higher than the one obtained for polyethylene (PE) samples with different morphologies.


Corresponding author: M. Esperanza Cagiao, Department of Macromolecular Physics, Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid, Spain, e-mail:

S.B. gratefully acknowledges the “Université Ferhat Abbas, Sétif UFAS” for the financial support of this investigation. M.E.C. thanks the Spanish MICINN for the generous support of this investigation (Grant MAT2009-07789).

References

[1] Son Y, Migler KB. Polymer 2002, 43, 3001–3006.10.1016/S0032-3861(02)00097-6Search in Google Scholar

[2] Flaris V, Zipper MD, Simon GP, Hill AJ. Polym. Eng. Sci. 1995, 35, 28–33.Search in Google Scholar

[3] Tselios C, Bikiaris D, Maslis V, Panayiotou C. Polymer 1998, 39, 6807–6817.10.1016/S0032-3861(98)00132-3Search in Google Scholar

[4] Krache R, Benachour D, Pötschke P. J. Appl. Polym. Sci. 2004, 94, 1976–1985.Search in Google Scholar

[5] The JW, Rudin A, Keung, JC. Adv. Polym. Technol. 1994, 13, 1–23.Search in Google Scholar

[6] Dumoulin MM, Farha C, Utracki LA. Polym. Eng. Sci. 1984, 24, 1319–1326.Search in Google Scholar

[7] LinY, Yakovleva V, Chen H, Hiltner A, Baer E. J. Appl. Polym. Sci. 2009, 113, 1945–1952.Search in Google Scholar

[8] Spencer MW, Cui L, Yoo Y, Paul DR. Polymer 2010, 51, 1056–1070.10.1016/j.polymer.2009.12.047Search in Google Scholar

[9] Wang KH, Choi MH, Koo ChM, Choi YS, Chung IJ. Polymer 2001, 42, 9819–9826.10.1016/S0032-3861(01)00509-2Search in Google Scholar

[10] Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Polymer 2002, 43, 5483–5491.10.1016/S0032-3861(02)00403-2Search in Google Scholar

[11] Hotta S, Paul DR. Polymer 2004, 45, 7639–7654.10.1016/j.polymer.2004.08.059Search in Google Scholar

[12] Chrissopoulou K, Altintzi I, Anastasiadis SH, Giannelis EP, Pitsikalis M, Hadjichristidis N, Theophilou N. Polymer 2005, 46, 12440–12451.10.1016/j.polymer.2005.10.106Search in Google Scholar

[13] Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC. Chem. Mater. 2001, 13, 3516–3523.Search in Google Scholar

[14] Chrissopoulou K, Altintzi, I, Andrianaki I, Shemesh R, Retsos H, Giannelis EP, Anastasiadis SH. J. Polym. Sci.. Part B, Polym. Phys. 2008, 46, 2683–2695.Search in Google Scholar

[15] Százdi L, Abranyi A, Pukánszky B Jr, Vansco JG, Pukánszky B. Macromol. Mater. Eng. 2006, 291, 858–868.Search in Google Scholar

[16] García-López D, Picazo O, Merino JC, Pastor JM. European Polym.J. 2003, 39, 945–950.Search in Google Scholar

[17] Paul DR, Robeson LM. Polymer 2008, 49, 3187–3204.10.1016/j.polymer.2008.04.017Search in Google Scholar

[18] Vermogen A, Masenelli-Varlot K, Seguela R, Duchet-Rumeau J, Boucard S, Prele P. Macromolecules 2005, 38, 9661–9669.10.1021/ma051249+Search in Google Scholar

[19] Nguyen QT, Baird DG. Adv. Polym. Technol. 2006, 25, 270–285.Search in Google Scholar

[20] Dhibar AK, Kim JK, Khatua BB. J. Appl. Polym. Sci. 2011, 119, 3080–3092.Search in Google Scholar

[21] Chiu FC, Yen HZ, Lee CE. Polymer Testing, 2010, 29, 397–406.10.1016/j.polymertesting.2010.01.004Search in Google Scholar

[22] Chiu FC, Yen HZ, Chen CC. Polymer Testing 2010, 29, 706–716.10.1016/j.polymertesting.2010.05.013Search in Google Scholar

[23] Deka BK, Maji TK. Composites: Part A 2011, 42, 686–693.10.1016/j.compositesa.2011.02.009Search in Google Scholar

[24] Deka BK, Maji TK. Comp. Sci. Technol. 2010, 70, 1755–1761.Search in Google Scholar

[25] Hull D. An Introduction to Composite Materials. Cambridge University Press: Cambridge, England, 1981, Chapter 5, p. 81.Search in Google Scholar

[26] Baltá Calleja FJ, Fakirov S. Microhardness of Polymers. Solid State Series, Cambridge University Press: Cambridge, England, 2000, Chapter 1, p. 3.10.1017/CBO9780511565021Search in Google Scholar

[27] Berdjane K, Berdjane Z, Rueda DR, Benachour D, Baltá Calleja FJ. J. Appl. Polym. Sci. 2003, 89, 2046–2050.Search in Google Scholar

[28] Krache R, Benachour D, Cagiao ME, Baltá Calleja FJ, Bayer RK, Tschöpe F. Int. J. Polym. Mater. 2003, 52, 939–956.Search in Google Scholar

[29] Baltá Calleja FJ, Cagiao ME, Adhikari R, Michler GH. Polymer 2004, 45, 247–254.10.1016/j.polymer.2003.10.089Search in Google Scholar

[30] Mina MF, Ania F, Huy TA, Michler GH, Baltá Calleja FJ. J. Macromol. Sci. B. 2004, 43, 947–961.Search in Google Scholar

[31] Adikhari R, Godehardt R, Lebek W, Frangov S, Michler GH, Radusch H-J, Baltá Calleja FJ. Polym. Adv. Technol. 2005, 16, 156–166.Search in Google Scholar

[32] Bouhelal S, Cagiao ME, Khellaf S, Benachour D, Baltá Calleja FJ. J. Appl. Polym. Sci. 2008, 109, 795–804.Search in Google Scholar

[33] Flores A, Cagiao ME, Ezquerra TA, Baltá Calleja FJ. J. Appl. Polym. Sci. 2001, 79, 90–95.Search in Google Scholar

[34] Bouhelal S, Cagiao ME, Khellaf S, Tabet H, Djellouli B, Benachour D, Baltá Calleja FJ. J. Appl. Polym. Sci. 2010, 115, 2654–2662.Search in Google Scholar

[35] Hellati A, Benachour D, Cagiao ME, Boufassa S, Baltá Calleja FJ. J. Appl. Polym. Sci. 2010, 118, 1278–1287.Search in Google Scholar

[36] Cagiao ME, Baltá Calleja FJ, Spieckermann F, Scholtyssek S, Mina MF, Bhuiyan MAH. J. Appl. Polym. Sci. 2012, 124, 3147–3153.Search in Google Scholar

[37] Puente Orench I, Ania F, Baer E, Hiltner A, Bernal T, Baltá Calleja FJ. Philos. Mag. 2004, 84, 1841–1852.Search in Google Scholar

[38] Liu NC, Baker WE. Adv. Polym. Technol. 1992, 11, 249–262.Search in Google Scholar

[39] ATHAS Databank. http://athas.prz.rzeszow.pl (accessed Oct. 2012).Search in Google Scholar

[40] Flores A, Aurrekoechea J, Gensler R, Kausch HH, Baltá Calleja FJ. Colloid Polym. Sci. 1998, 276, 786–793.Search in Google Scholar

[41] Baltá Calleja FJ, Santa Cruz C, Bayer RK, Kilian HG. Colloid Polym. Sci. 1990, 68, 440–446.Search in Google Scholar

[42] Flores A, Baltá Calleja FJ, Attenburrow GE, Bassett DC. Polymer 2000, 41, 5431–5435.10.1016/S0032-3861(99)00755-7Search in Google Scholar

[43] Baltá Calleja FJ, Giri L, Ward IM, Cansfield DLM. J. Mater. Sci. 1995, 30, 1139–1143.Search in Google Scholar

[44] Baltá Calleja FJ, Fakirov S. Microhardness of Polymers. Solid State Series, Cambridge University Press: Cambridge, England, 2000, Chapters 4 and 5.10.1017/CBO9780511565021Search in Google Scholar

Received: 2013-2-28
Accepted: 2013-7-5
Published Online: 2013-08-06
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0048/html?lang=en
Scroll to top button