Home Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends
Article
Licensed
Unlicensed Requires Authentication

Thermal and mechanical properties of ultrahigh molecular weight polyethylene/high-density polyethylene/polyethylene glycol blends

  • Mazatusziha Ahmad , Mat Uzir Wahit EMAIL logo , Mohammed Rafiq Abdul Kadir , Khairul Zaman Mohd Dahlan and Mohammad Jawaid
Published/Copyright: August 17, 2013
Become an author with De Gruyter Brill

Abstract

Blends of ultrahigh molecular weight polyethylene (UHMWPE) with high-density polyethylene (HDPE) provide adequate mechanical properties for biomedical application. In this study, the mechanical and thermal properties of UHMWPE/HDPE blends with the addition of polyethylene glycol (PEG) prepared via single-screw extruder nanomixer were investigated. The UHMWPE/HDPE blends exhibit a gradual increase in strength, modulus, and impact strength over pure polymers, suggesting synergism in the polymer blends. The elastic and flexural modulus was increased at the expense of tensile, flexural, and impact strength for the blends containing PEG. The degradation temperature of UHMWPE was improved with the incorporation of HDPE due to good thermal stability of HDPE. HDPE improved the dispersibility of PEG in matrix, consequently reduced the surface area available for the kinetic effects, and reduced the degradation temperature. The morphology analysis confirmed the miscibility between UHMWPE and HDPE and the changes in polymer structure with the presence of PEG modify the thermal behavior of the blends. The mechanical properties of the blends that are underlying values for the design of implant material show the potential used as biomedical devices.


Corresponding author: Mat Uzir Wahit, Center for Composites, Universiti Teknologi Malaysia, Johor, 81310 Skudai, Malaysia, e-mail:

The authors would like to thank the Ministry of Science, Technology and Innovation, Malaysia, for the E-Science Fund Grant (Vot no. 79160) and Universiti Teknologi Malaysia.

References

[1] Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Biomaterials 1999, 20, 1659–1688.10.1016/S0142-9612(99)00053-8Search in Google Scholar

[2] Okularczyk W. Arch. Civ. Mech. Eng. 2004, 1, 167–176.Search in Google Scholar

[3] Fang L, Gao P, Leng Y. Biomaterials 2006, 27, 3701–3707.10.1016/j.biomaterials.2006.02.023Search in Google Scholar

[4] Muratoglu O, Mark A, Vittetoe D, Harris W, Rubash HJ. Bone Jt. Surg. 2003, 85A, 7–13.Search in Google Scholar

[5] Wu JJ, Buckley CP, O’Connor JJ. Biomaterials 2002, 23, 3773–3783.10.1016/S0142-9612(02)00117-5Search in Google Scholar

[6] Buckley CP, Wu J, Haughie DW. Biomaterials 2006, 28, 3178–3186.10.1016/j.biomaterials.2006.01.030Search in Google Scholar

[7] Jacob O, Kazanci M, Cohn D, Marom G. Wear 2002, 253, 618–625.10.1016/S0043-1648(02)00110-2Search in Google Scholar

[8] Ruan SL, Gao P, Yang XG, Yu TX. Polymer 2003, 44, 5643–5654.10.1016/S0032-3861(03)00628-1Search in Google Scholar

[9] Kennedy MA, Peacock AJ, Mandelkern L. Macromolecules 1994, 27, 5297–5310.10.1021/ma00097a009Search in Google Scholar

[10] Gul RM, McGarry F. J. Polym. Eng. Sci. 2004, 44, 1848–1857.Search in Google Scholar

[11] Fu J, Ghali BW, Lozynsky AJ, Ebru OO, Muratoglu K. Polymer 2010, 51, 2721–2731.10.1016/j.polymer.2010.04.003Search in Google Scholar

[12] Xie M, Liu X, Li H. J. Appl. Polym. Sci. 2006, 100, 1282–1288.Search in Google Scholar

[13] Boscoletto AB, Franco R, Scapin M, Tavan M. Eur. Polym. J. 1997, 33, 97–105.Search in Google Scholar

[14] Li N, Xiao C, Zhang Z. J. Appl. Polym. Sci. 2010, 117, 720–728.Search in Google Scholar

[15] Xue Y, Wu W, Jacobs O, Scha B. Polym. Test. 2006, 25, 221–229.Search in Google Scholar

[16] Xie M, Li H. J. Appl. Polym. Sci. 2008, 18, 3148–3153.Search in Google Scholar

[17] Liu G, Chen Y, Li H. J. Appl. Polym. Sci. 2004, 92, 3894–3900.Search in Google Scholar

[18] Zhu Y, Chang L, Yu S. J. Therm. Anal. 1995, 45, 329–333.Search in Google Scholar

[19] Simis KS, Pruitt LA, Bistolfi A, Bellare A. Biomaterials 2006, 27, 1688–1694.10.1016/j.biomaterials.2005.09.033Search in Google Scholar PubMed

[20] Galeski A, Bartczak Z, Argon AS, Cohen RE. Macromolecules 1992, 25, 5705–5718.10.1021/ma00047a023Search in Google Scholar

[21] Lee BJ, Argon AS, Parks DM, Ahzi S, Bartczak Z. Polymer 1993, 34, 3555–3575.10.1016/0032-3861(93)90039-DSearch in Google Scholar

[22] Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E. Polymer 1997, 38, 3513–3520.10.1016/S0032-3861(96)00906-8Search in Google Scholar

[23] Lim KLK, Mohd Ishak ZA, Ishiaku US, Fuad AMY, Yusof AH, Czigany T, Pukanszky B, Ogunniyi DS. J. Appl. Polym. Sci. 2005, 97, 413–425.Search in Google Scholar

[24] Zuo JD, Zhu YM, Liu SM, Jiang ZJ, Zhao JQ. Polym. Bull. 2007, 58, 711–722.Search in Google Scholar

[25] Tanem BS, Stori A. Polymer 2001, 42, 5389–5399.10.1016/S0032-3861(00)00872-7Search in Google Scholar

[26] Kyu T, Vadhar P. J. Appl. Polym. Sci. 1986, 32, 5575–5584.Search in Google Scholar

[27] Minkova L, Mihailov M. Colloid Polym. Sci. 1987, 265, 1–7.Search in Google Scholar

[28] Vadhar P, Kyu T. Polym. Eng. Sci. 1987, 27, 202.Search in Google Scholar

[29] Puig CC. Polymer 2001, 42, 6579–6585.10.1016/S0032-3861(01)00102-1Search in Google Scholar

[30] Whitehouse C, Lu XH, Gao P, Chai CK. Polym. Eng. Sci. 1997, 37, 1944–1958.Search in Google Scholar

[31] Nitta KH, Tanaka A. Polymer 2001, 42, 1219–1226.10.1016/S0032-3861(00)00418-3Search in Google Scholar

[32] Stadler FJ, Kascht J, Munstedt H. Polymer 2005, 46, 10311–10320.10.1016/j.polymer.2005.07.099Search in Google Scholar

[33] Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. Polym. Degrad. Stabil. 2000, 67, 535–540.Search in Google Scholar

[34] Roy PK, Surekhal P, Rajagopal C, Choudhary V. Expr. Polym. Lett. 2007, 1, 208–216.Search in Google Scholar

[35] Bockhorn H, Hornung A, Hornung UJ. Anal. Appl. Pyrol. 1999, 50, 77–5101.Search in Google Scholar

[36] Klaric S, Vrandec N, Roje U. J. Appl. Polym. Sci. 2000, 78, 166–172.Search in Google Scholar

[37] Nesterov AY, Lipatov YS, Ignatova TD, Lashuk AA. Polym. Sci. U.S.S.R. 1980, 22, 2922–2928.Search in Google Scholar

[38] Huang YL, Brown N. Polymer 1992, 33, 2989–2997.10.1016/0032-3861(92)90086-CSearch in Google Scholar

[39] He T. Polymer 1986, 27, 253–255.10.1016/0032-3861(86)90335-6Search in Google Scholar

[40] Mohanty S, Nando GB. Polymer 1996, 37, 5387.10.1016/S0032-3861(96)00391-6Search in Google Scholar

[41] Peacock AJ. Handbook of Polyethylene, New York: Marcel Dekker, 2000, p. 69.10.1201/9781482295467Search in Google Scholar

[42] Fu Q, Men Y, Strobl G. Polymer 2003, 44, 1927–1933.10.1016/S0032-3861(02)00940-0Search in Google Scholar

[43] Nugay N, Tincer T. Eur. Polym. J. 1994, 30, 473–477.Search in Google Scholar

[44] Gao P, Mackley MR. Polymer 1994, 35, 5210–5216.10.1016/0032-3861(94)90471-5Search in Google Scholar

[45] Parasnis NC, Ramani K. J. Mater. Sci. Mater. Med. 1998, 9, 165–172.Search in Google Scholar

[46] Suwanprateeb J. J. Appl. Polym. Sci. 1999, 75, 1503–1513.Search in Google Scholar

[47] Faker M, Razavi Aghjeh MK, Ghaffari M, Seyyedi S. Eur. Polym. J. 2008, 44, 1834–1842.Search in Google Scholar

[48] Kurtz SM. USA: The UHMWPE Handbook. Ultra-high Molecular Weight Polyethylene in Total Joint Replacement. Elsevier/Academic Press, 2004.10.1520/STP1445-EBSearch in Google Scholar

[49] Brough I, Haward RN, Healey G, Wood A. Polymer 2004, 45, 3115–3123.10.1016/j.polymer.2004.02.036Search in Google Scholar

Received: 2012-11-5
Accepted: 2013-7-11
Published Online: 2013-08-17
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2012-0142/html?lang=en
Scroll to top button