Startseite Investigation of rapid manufacturing technology with ABS material for wind tunnel models fabrication
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of rapid manufacturing technology with ABS material for wind tunnel models fabrication

  • Saeed Daneshmand EMAIL logo , Cyrus Aghanajafi und Hossein Shahverdi
Veröffentlicht/Copyright: 4. Dezember 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nowadays, several procedures are used for manufacturing wind tunnel models. These methods include machining, casting, molding and rapid prototyping. Raw materials such as metals, ceramics, composites and plastics are used in making these models. Dimension accuracy, surface roughness and material strength are significant parameters which are effective in wind tunnel manufacturing and testing. Wind tunnel testing may need several models. Traditional methods for constructing these models are both costly and time consuming. In this research, a study has been undertaken to determine the suitability of models constructed using rapid manufacturing (RM) methods for use in wind tunnel testing. The aim of this research is to improve the surface roughness, dimensional accuracy and material strength of rapid manufacturing models for testing in wind tunnels. Consequently, the aerodynamic characteristics of three models were investigated and compared. The first model is made of steel, the second model from FDM-M30, and the third model is a hybrid model. Results show that metal models can be replaced by hybrid models in order to measure aerodynamic characteristics, reduce model fabrication time, save fabrication cost and also to verify the accuracy of aerodynamic data obtained in aerospace industry.


Corresponding author: Saeed Daneshmand, Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Mail Box: 14155/4933, Tehran, Iran

Received: 2012-8-5
Accepted: 2012-10-16
Published Online: 2012-12-04
Published in Print: 2012-12-01

©2012 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Masthead
  2. Masthead
  3. Original Articles
  4. Sensitivity analysis of free-volume theory parameters in multicomponent polymer-solvent-solvent systems
  5. Effect of intercalant types on the properties of melt blended metallocene polyethylene/metallocene polyethylene-g-silane/clay nanocomposites
  6. Compatibilization and toughening of immiscible ternary blends of polyamide 1010, polypropylene, and ABS resin
  7. Clay modification with silane compounds and characterization of the silicone rubber/clay composites
  8. Effects of surface treatments of AA 2024-T3 aluminum sheet on bonding to epoxy-based film adhesive
  9. Thermooxidative degradation and its kinetics of natural rubber coagulated by microwave radiation
  10. Modeling of tensile modulus of polyolefin-layered silicate nanocomposites: modified micro-mechanical and statistical methods
  11. Comparative study and characterization of starches isolated from unconventional tuber sources
  12. Unsaturated polyester/E-glass fiber composites made by vacuum assisted compression resin transfer molding
  13. Influence of stacking sequence on mechanical properties of basalt-jute fiber-reinforced polymer hybrid composites
  14. Effect of processing variables on mechanical properties of montmorillonite clay/unsaturated polyester nanocomposite using Taguchi based grey relational analysis
  15. Study on DTBP initiated MAH onto polybutene-1 with melt-grafting
  16. Investigation of rapid manufacturing technology with ABS material for wind tunnel models fabrication
  17. Potential solvent for reconditioning polyolefin waste materials
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2012-0089/pdf
Button zum nach oben scrollen