Startseite Photodynamic therapy for cancer of the pancreas – The story so far
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photodynamic therapy for cancer of the pancreas – The story so far

  • Stephen G. Bown EMAIL logo
Veröffentlicht/Copyright: 6. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Background and objective: Pancreatic cancer has long been a leading cause of cancer death. Few patients are suitable for surgery and for those who are not, the response to treatment is generally poor. No more than about 10% survive for more than a year. Recent research has focused on focal treatment for local disease control. This review covers the development of one of the most promising options, photodynamic therapy (PDT).

Methods: This review covers pre-clinical and clinical studies. Laboratory work was designed to understand the effect of PDT on the normal pancreas and surrounding tissues and on transplanted cancers in the hamster pancreas to ensure safety prior to clinical application. Essentially all clinical studies have been undertaken in University College Hospital, London. Phase-I studies used the photosensitisers mTHPC and verteporfin in patients with localised but inoperable cancers.

Results: Laboratory results showed that normal pancreas, bile duct, liver, stomach and major blood vessels could tolerate PDT without any unacceptable effects on the structure and function of these organs. Necrosis that healed safely was documented in transplanted cancers. The clinical trials showed that focal necrosis could be produced in inoperable cancers with acceptable levels of complications, but considerable refinements of treatment delivery and monitoring are required before the technique will be ready for assessment in controlled clinical trials.

Conclusions: PDT is showing promise for the minimally invasive treatment of localised pancreatic cancers, but it is still at an early stage of development. Much more work will be necessary to optimise techniques for applying PDT to these cancers and for combining it with other therapeutic options such as chemotherapy.

Zusammenfassung

Hintergrund und Zielsetzung: Bauchspeicheldrüsenkrebs gehört seit langem zu den am häufigsten zum Tode führenden Krebserkrankungen. Nur wenige Patienten sind für einen chirurgischen Eingriff geeignet und die, die es nicht sind, haben in der Regel eine schlechte Prognose. Nicht mehr als etwa 10% überleben für mehr als ein Jahr. Die neuere Forschung hat sich bei der Krankheitsbekämpfung auf fokale Behandlungsformen konzentriert. Die vorliegende Arbeit fokussiert sich auf die Entwicklung einer der vielversprechendsten Optionen, die Photodynamische Therapie (PDT).

Methoden: Das vorliegende Review umfasst sowohl präklinische als auch klinische Studien. Laboruntersuchungen wurden durchgeführt, um zunächst die Wirkung der PDT auf die normale Bauchspeicheldrüse und das umgebende Gewebe sowie auf transplantierte Tumoren im Hamstermodell zu verstehen, um so die Sicherheit im Vorfeld klinischer Anwendungen zu gewährleisten. Im Wesentlichen wurden alle klinischen Studien im University College Hospital, London durchgeführt. In Phase-I-Studien wurden die Photosensibilisatoren mTHPC und Verteporfin bei Patienten mit lokal begrenztem, aber inoperablem Krebs angewendet.

Ergebnisse: Die Laborergebnisse zeigten, dass normales Gewebe von Bauchspeicheldrüse, Gallengang, Leber, und Magen sowie große Blutgefäße eine PDT ohne inakzeptable Auswirkungen auf die Struktur und Funktion dieser Organe tolerieren kann. Nekrosen, die sicher heilten, wurden in transplantierten Tumoren dokumentiert. Die klinischen Studien haben gezeigt, dass fokale Nekrosen bei inoperablen Tumoren mit tolerablen Komplikationen erzeugt werden können, aber eine erhebliche Verbesserung der Behandlung und Überwachung erforderlich sind, bevor die Technik in kontrollierten klinischen Studien weiter beurteilt werden kann.

Schlussfolgerungen: Die PDT stellt eine vielversprechende minimal-invasive Behandlungsoption bei lokalisiertem Bauchspeicheldrüsenkrebs dar, befindet sich aber noch in einem frühen Entwicklungsstadium. Mehr Forschungsarbeit ist notwendig, um die für die PDT erforderlichen Techniken für diese Krebsart zu optimieren und die PDT mit anderen therapeutischen Optionen, wie der Chemotherapie, kombinieren zu können.

References

[1] Luo J, Xiao L, Wu C, Zheng Y, Zhao N. The incidence and survival rate of population-based pancreatic cancer patients: Shanghai Cancer Registry 2004–2009. PLoS One 2013;8(10):e76052.10.1371/journal.pone.0076052Suche in Google Scholar PubMed PubMed Central

[2] Cunningham D, Chau I, Stocken DD, Valle JW, Smith D, Steward W, Harper PG, Dunn J, Tudur-Smith C, West J, Falk S, Crellin A, Adab F, Thompson J, Leonard P, Ostrowski J, Eatock M, Scheithauer W, Herrmann R, Neoptolemos JP. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J Clin Oncol 2009;27(33):5513–8.10.1200/JCO.2009.24.2446Suche in Google Scholar PubMed

[3] Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissa-Akouz F, Péré-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011;364(19):1817–25.10.1056/NEJMoa1011923Suche in Google Scholar PubMed

[4] Steger AC. Interstitial laser hyperthermia for the treatment of hepatic and pancreatic tumours. Photochem Photobiol 1991;53(6):837–44.10.1111/j.1751-1097.1991.tb09898.xSuche in Google Scholar PubMed

[5] Steger AC, Lees WR, Walmsley K, Bown SG. Interstitial laser hyperthermia: a new approach to local destruction of tumours. Br Med J 1989;299(6695):362–5.10.1136/bmj.299.6695.362Suche in Google Scholar PubMed PubMed Central

[6] Labori KJ, Schulz A, Drolsum A, Guren MG, Kløw NE, Bjørnbeth BA. Radiofrequency ablation of unresectable colorectal liver metastases: trends in management and outcome during a decade at a single center. Acta Radiol Open 2015;4(7):2058460115580877.10.1177/2058460115580877Suche in Google Scholar PubMed PubMed Central

[7] Barr H, Tralau CJ, Boulos PB, MacRobert AJ, Tilly R, Bown SG. The contrasting mechanisms of colonic collagen damage between photodynamic therapy and thermal injury. Photochem Photobiol 1987;46(5):795–800.10.1111/j.1751-1097.1987.tb04850.xSuche in Google Scholar PubMed

[8] Grant WE, Buonaccorsi G, Speight PM, MacRobert AJ, Hopper C, Bown SG. The effect of photodynamic therapy on the mechanical integrity of normal rabbit carotid arteries. Laryngoscope 1995;105(8 Pt 1):867–71.10.1288/00005537-199508000-00019Suche in Google Scholar PubMed

[9] Chatlani PT, Nuutinen PJ, Toda N, Barr H, MacRobert AJ, Bedwell J, Bown SG. Selective necrosis in hamster pancreatic tumours using photodynamic therapy with phthalocyanine photosensitization. Br J Surg 1992;79(8):786–90.10.1002/bjs.1800790826Suche in Google Scholar PubMed

[10] Bedwell J, Chatlani PT, MacRobert AJ, Roberts JE, Barr H, Dillon J, Bown SG. Enhanced tumour selectivity of photodynamic therapy in the rat colon using a radioprotective agent. Photochem Photobiol 1991;53(6):753–6.10.1111/j.1751-1097.1991.tb09888.xSuche in Google Scholar PubMed

[11] Bown SG. Photodynamic therapy for photochemists. Philos Trans A Math Phys Eng Sci 2013;371(1995):20120371.10.1098/rsta.2012.0371Suche in Google Scholar PubMed

[12] Niu L, Chen J, He L, Liao M, Yuan Y, Zeng J, Li J, Zuo J, Xu K. Combination treatment with comprehensive cryoablation and immunotherapy in metastatic pancreatic cancer. Pancreas 2013;42(7):1143–9.10.1097/MPA.0b013e3182965ddeSuche in Google Scholar PubMed

[13] Kaplan J, Khalid A, Cosgrove N, Soomro A, Mazhar SM, Siddiqui AA. Endoscopic ultrasound-fine needle injection for oncological therapy. World J Gastrointest Oncol 2015;7(12):466–72.10.4251/wjgo.v7.i12.466Suche in Google Scholar PubMed PubMed Central

[14] Yu YP, Yu Q, Guo JM, Jiang HT, Di XY, Zhu Y. Effectiveness and security of CT-guided percutaneous implantation of (125)I seeds in pancreatic carcinoma. Br J Radiol 2014;87(1039):20130642.10.1259/bjr.20130642Suche in Google Scholar PubMed PubMed Central

[15] Zhou Y. High-intensity focused ultrasound treatment for advanced pancreatic cancer. Gastroenterol Res Pract 2014;2014:205325.10.1155/2014/205325Suche in Google Scholar PubMed PubMed Central

[16] Nuutinen PJ, Chatlani PT, Bedwell J, MacRobert AJ, Phillips D, Bown SG. Distribution and photodynamic effect of disulphonated aluminium phthalocyanine in the pancreas and adjacent tissues in the Syrian golden hamster. Br J Cancer 1991;64(6):1108–15.10.1038/bjc.1991.473Suche in Google Scholar PubMed PubMed Central

[17] Mikvy P, Messmann H, Pauer M, Stewart JC, Millson CE, MacRobert AJ, Bown SG. Distribution and photodynamic effects of meso-tetrahydroxyphenylchlorin (mTHPC) in the pancreas and adjacent tissues in the Syrian golden hamster. Br J Cancer 1996;73(12):1473–9.10.1038/bjc.1996.279Suche in Google Scholar PubMed PubMed Central

[18] Ayaru L, Wittmann J, Macrobert AJ, Novelli M, Bown SG, Pereira SP. Photodynamic therapy using verteporfin photosensitization in the pancreas and surrounding tissues in the Syrian golden hamster. Pancreatology 2007;7(1):20–7.10.1159/000101874Suche in Google Scholar PubMed

[19] Mikvy P, Messman H, MacRobert AJ, Pauer M, Sams VR, Davies CL, Stewart JC, Bown SG. Photodynamic therapy of a transplanted pancreatic cancer model using meta-tetrahydroxyphenylchlorin (mTHPC). Br J Cancer 1997;76(6):713–8.10.1038/bjc.1997.451Suche in Google Scholar PubMed PubMed Central

[20] Regula J, Ravi B, Bedwell J, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolaevulinic acid for experimental pancreatic cancer – Prolonged animal survival. Br J Cancer 1994;70(2):248–54.10.1038/bjc.1994.288Suche in Google Scholar PubMed PubMed Central

[21] Evrard S, Keller P, Hajri A, Balboni G, Mendoza-Burgos L, Damgé C, Marescaux J, Aprahamian M. Experimental pancreatic cancer in the rat treated by photodynamic therapy. Br J Surg 1994;81(8):1185–9.10.1002/bjs.1800810835Suche in Google Scholar PubMed

[22] Bown SG, Rogowska AZ, Whitelaw DE, Lees WR, Lovat LB, Ripley P, Jones L, Wyld P, Gillams A, Hatfield AW. Photodynamic therapy for cancer of the pancreas. Gut 2002;50(4):549–57.10.1136/gut.50.4.549Suche in Google Scholar PubMed PubMed Central

[23] Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW, Pereira SP. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 2014;110(7):1698–704.10.1038/bjc.2014.95Suche in Google Scholar PubMed PubMed Central

[24] Jermyn M, Davis SC, Dehghani H, Huggett MT, Hasan T, Pereira SP, Bown SG, Pogue BW. CT contrast predicts pancreatic cancer treatment response to verteporfin-based photodynamic therapy. Phys Med Biol 2014;59(8):1911–21.10.1088/0031-9155/59/8/1911Suche in Google Scholar PubMed PubMed Central

[25] Mansfield RJ, Jenkins MP, Pai ML, Bishop CC, Bown SG, McEwan JR. Long-term safety and efficacy of superficial femoral artery angioplasty with adjuvant photodynamic therapy to prevent restenosis. Br J Surg 2002;89(12):1538–9.10.1046/j.1365-2168.2002.02269.xSuche in Google Scholar PubMed

[26] Elliott JT, Samkoe KS, Gunn JR, Stewart EE, Gardner TB, Tichauer KM, Lee TY, Hoopes PJ, Pereira SP, Hasan T, Pogue BW. Perfusion CT estimates photosensitizer uptake and biodistribution in a rabbit orthotopic pancreatic cancer model: a pilot study. Acad Radiol 2015;22(5):572–9.10.1016/j.acra.2014.12.014Suche in Google Scholar PubMed PubMed Central

[27] Yusuf TE, Matthes K, Brugge WR. EUS-guided photodynamic therapy with verteporfin for ablation of normal pancreatic tissue: a pilot study in a porcine model (with video). Gastrointest Endosc 2008;67(6):957–61.10.1016/j.gie.2007.08.020Suche in Google Scholar PubMed

[28] Korbelik M, Merchant S. Photodynamic therapy-generated cancer vaccine elicits acute phase and hormonal response in treated mice. Cancer Immunol Immunother 2012;61(9):1387–94.10.1007/s00262-012-1206-8Suche in Google Scholar PubMed

[29] Spring BQ, Bryan Sears R, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, Schoenfeld DA, Pogue BW, Pereira SP, Villa E, Hasan T. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat Nanotechnol 2016;11(4):378–87.10.1038/nnano.2015.311Suche in Google Scholar PubMed PubMed Central

[30] Topazian M, Zhong N, Baron TH, Vege SS, Wang KK. Photodynamic therapy of intraductal papillary mucinous neoplasm. Endoscopy 2012;44(2):213–5.10.1055/s-0031-1291539Suche in Google Scholar PubMed

[31] Alemar B, Gregório C, Ashton-Prolla P. miRNAs as diagnostic and prognostic biomarkers in pancreatic ductal adenocarcinoma and its precursor lesions: a review. Biomark Insights 2015;10:113–24.10.4137/BMI.S27679Suche in Google Scholar PubMed PubMed Central

Received: 2016-1-28
Revised: 2016-2-29
Accepted: 2016-3-1
Published Online: 2016-4-6
Published in Print: 2016-5-1

©2016 by De Gruyter

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/plm-2016-0001/html
Button zum nach oben scrollen