Abstract
Background and objectives: Intensive research in the area of photodynamic therapy (PDT) has been made in recent years revealing it as a promising method for the treatment of tumors and inactivation of pathogenic microorganisms. However, for a broader application of this therapy one major challenge, namely a significant improvement of the targeted drug delivery and uptake, still remains. A possible solution of the selectivity problem could be the application of specifically functionalized photosensitizers, in particular phthalocyanine dyes.
Materials and methods: Water-soluble Zn(II) phthalocyanines (ZnPcs) with four galactose moieties on non-peripheral and peripheral positions and a non-substituted Zn(II) phthalocyanine were studied for in vitro antitumor activity on three breast cancer cell lines (MCF-7, MDA-MB-231 and HBL-100). The influence of the exposure to ultraviolet (UV) (365 nm) and red (635 nm) light in non-therapeutic doses on the cellular uptake, binding and subcellular localization of three photosensitizers was investigated by confocal laser scanning microscopy. In addition, phototoxicity studies with the tested phthalocyanines on the non-tumorigenic mouse embryo cell line Balb c/3T3 (clone 31) were carried out.
Results: The results indicate that the pre-treatment, namely exposure to UV or red light, influences the localization properties of the used dyes. The positions of galactose units to the ZnPc ring also influenced the uptake, localization and the photodynamic response of breast cancer cells. The results show that the galactose substitution, together with exposure to UV or red light in non-therapeutic doses, are important factors for the photodynamic effect.
Conclusion: Experimental PDT with galactose-substituted ZnPcs accompanied by UV and red light pre-irradiation leads to a higher photodynamic effect towards breast tumor cells. Thus, the investigated galactopyranosyl-substituted phthalocyanines could be used as a part of the design of intelligent, stimuli-responsive nanosystems for medical applications.
Zusammenfassung
Hintergrund und Zielsetzung: Die intensive Forschung der letzten Jahre hat belegt, welch vielversprechendes Verfahren die Photodynamische Therapie (PDT) zur Behandlung von Tumoren und zur Inaktivierung pathogener Mikroorganismen ist. Dennoch, für eine breitere Anwendung dieser Therapie bedarf es einer signifikanten Verbesserung der gezielten Wirkstoffabgabe und -aufnahme. Eine mögliche Lösung dieses Problems der Selektivität könnte die Anwendung von speziell funktionalisierten Phthalocyaninfarbstoffen sein.
Materialien und Methoden: Wasserlösliche Zink(II)phthalocyanine (ZnPcs) mit vier Galaktoseeinheiten auf nicht-peripheren und peripheren Positionen und ein nicht-substituiertes ZnPc wurden an drei Brustkrebszelllinien (MCF-7, MDA-MB-231 und HBL-100) auf ihre In-vitro-Antitumoraktivität untersucht. Der Einfluss der Bestrahlung mit ultraviolettem (UV) (365 nm) und rotem (635 nm) Licht in nicht-therapeutischen Dosen auf die zelluläre Aufnahme, die Bindungseigenschaften und die subzelluläre Lokalisation von drei Photosensibilisatoren wurde mittels der konfokalen Laser-Scanning-Mikroskopie untersucht. Zusätzlich wurden mit den getesteten Phthalocyaninen Phototoxizitätsstudien an der nicht-tumorigen Mausembryo-Zelllinie Balb c/3T3 (Klon 31) durchgeführt.
Ergebnisse: Die Ergebnisse zeigen, dass die Vorbehandlung, nämlich Bestrahlung mit UV- oder rotem Licht, die Lokalisationseigenschaften der verwendeten Farbstoffe beeinflusst. Die Positionen der Galaktoseeinheiten am ZnPc-Ring beeinflussen auch die Aufnahme, Lokalisierung und die photodynamische Reaktion von Brustkrebszellen. Die Ergebnisse zeigen, dass die Galaktosesubstitution zusammen mit der Exposition gegenüber UV- oder rotem Licht in nicht-therapeutischen Dosen wichtige Faktoren für die photodynamische Wirkung darstellen.
Fazit: Die experimentelle PDT mit Galaktose-substituierten ZnPcs begleitet von UV- und roter Vorbestrahlung führt zu einer höheren photodynamischen Wirkung auf Brusttumorzellen. Somit könnten die untersuchten galaktopyranosyl-substituierten Phthalocyanine als ein Teil des Designs von intelligenten, auf Stimuli reagierenden Nanosystemen für medizinische Anwendungen verwendet werden.
Acknowledgments
This work is supported by the National Science Fund of Bulgarian Ministry of Education and Science (Grant number: ‘DFNI-B02/9/2014’).
Conflict of interest statement
Conflict of interest statement: The authors state no conflict of interest. All authors have read the journal’s Publication Ethics and Publication Malpractice Statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.
References
[1] Garcia-Bennett A, Nees M, Fadeel B. In search of the Holy Grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 2011;81(8):976–84.10.1016/j.bcp.2011.01.023Search in Google Scholar PubMed
[2] Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 2011;63(9):730–47.10.1016/j.addr.2011.03.010Search in Google Scholar PubMed
[3] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010;62(11):1064–79.10.1016/j.addr.2010.07.009Search in Google Scholar PubMed PubMed Central
[4] Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 2012;161(2):175–87.10.1201/9780429399039-6Search in Google Scholar
[5] Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010;62(11):1094–124.10.1016/j.addr.2010.09.002Search in Google Scholar PubMed PubMed Central
[6] Li YY, Dong HQ, Wang K, Shi DL, Zhang XZ, Zhuo RX. Stimulus-responsive polymeric nanoparticles for biomedical applications. Sci China Chem 2010;53(3):447–57.10.1007/s11426-010-0101-4Search in Google Scholar
[7] Dai T, Huang YY, Hamblin MR. Photodynamic therapy for localized infections – State of the art. Photodiagnosis Photodyn Ther 2009;6(3–4):170–88.10.1016/j.pdpdt.2009.10.008Search in Google Scholar PubMed PubMed Central
[8] Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 2007;1776(1):86–107.10.1016/j.bbcan.2007.07.001Search in Google Scholar PubMed
[9] Moore RB, Xiao Z, Tulip J, Chapman JD. A comparison of susceptibility to photodynamic treatment between endothelial and tumor cells in vitro and in vivo. Photodiagnosis Photodyn Ther 2007;4(3):160–9.10.1016/j.pdpdt.2006.12.003Search in Google Scholar PubMed
[10] Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 2011;14(3):150–63.10.1016/j.drup.2011.01.003Search in Google Scholar PubMed
[11] Wojtyk JTC, Goyan R, Gudgin-Dickson E, Pottier R. Exploiting tumour biology to develop novel drug delivery strategies for PDT. Med Laser Appl 2006;21(4):225–38.10.1016/j.mla.2006.07.005Search in Google Scholar
[12] Mitra S, Mironov O, Foster TH. Confocal fluorescence imaging enables noninvasive quantitative assessment of host cell populations in vivo following photodynamic therapy. Theranostics 2012;2(9):840–9.10.7150/thno.4385Search in Google Scholar
[13] Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009;96(1):1–8.10.1016/j.jphotobiol.2009.04.001Search in Google Scholar
[14] Norum OJ, Selbo PK, Weyergang A, Giercksky KE, Berg K. Photochemical internalization (PCI) in cancer therapy: from bench towards bedside medicine. J Photochem Photobiol B 2009;96(2):83–92.10.1016/j.jphotobiol.2009.04.012Search in Google Scholar
[15] Yogo T, Urano Y, Kamiya M, Sano K, Nagano T. Development of enzyme-activated photosensitizer based on intramolecular electron transfer. Bioorg Med Chem Lett 2010;20(15):4320–3.10.1016/j.bmcl.2010.06.091Search in Google Scholar
[16] Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther 2005;2(2):91–106.10.1016/S1572-1000(05)00060-8Search in Google Scholar
[17] Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004;5(8):497–508.10.1016/S1470-2045(04)01529-3Search in Google Scholar
[18] Awan MA, Tarin SA. Review of photodynamic therapy. Surgeon 2006;4(4):231–6.10.1016/S1479-666X(06)80065-XSearch in Google Scholar
[19] Nyokong T. Electronic spectral and electrochemical behavior of near-infrared absorbing metallophthalocyanines. In: Jiang JJ, editor. Functional phthalocyanine molecular materials. Heidelberg, Dordrecht, London and New York: Springer; 2010, p. 45–87.10.1007/978-3-642-04752-7_2Search in Google Scholar
[20] Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012;2(9):916–66.10.7150/thno.4571Search in Google Scholar PubMed PubMed Central
[21] Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B, Schnurpfeil G. Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyr Phthalocyanines 1998;2(2):145–58.10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2Search in Google Scholar
[22] Vedachalam S, Choi BH, Pasunooti KK, Ching KM, Lee K, Yoon HS, Liu XW. Glycosylated porphyrin derivatives and their photodynamic activity in cancer cells. Med Chem Commun 2011;2(5):371–7.10.1039/c0md00175aSearch in Google Scholar
[23] Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 1999;4(11):507–17.10.1016/S1359-6446(99)01412-9Search in Google Scholar
[24] Zimcik P, Miletin M. Photodynamic therapy. In: Lang AR, editor. Dyes and pigments: new research. New York: Nova Science Publishers; 2009, p. 1–62.Search in Google Scholar
[25] Mantareva V, Petrova D, Avramov L, Angelov I, Borisova E, Peeva M, Wöhrle D. Long wavelength absorbing cationic Zn(II)-phthalocyanines as fluorescent contrast agents for B16 pigmented melanoma. J Porphyr Phthalocyanines 2005;9(1):47–53.10.1142/S1088424605000095Search in Google Scholar
[26] Mantareva V, Kussovski V, Angelov I, Wöhrle D, Dimitrov R, Popova E, Dimitrov S. Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci 2011;10(1):91–102.10.1039/B9PP00154ASearch in Google Scholar
[27] Yano S, Hirohara S, Obata M, Hagiya Y, Ogura SI, Ikeda A, Kataoka H, Tanaka M, Joh T. Current states and future views in photodynamic therapy. J Photochem Photobiol C 2011;12(1):46–67.10.1016/j.jphotochemrev.2011.06.001Search in Google Scholar
[28] Zorlu Y, Dumoulin F, Bouchu D, Ahsen V, Lafont D. Monoglycoconjugated water-soluble phthalocyanines. Design and synthesis of potential selectively targeting PDT photosensitisers. Tetrahedron Lett 2010;51(50):6615–8.10.1016/j.tetlet.2010.10.044Search in Google Scholar
[29] Li HP. Study on synthesis and biological activity of a galactosylated piperazinyl porphyrin. Bioorg Med Chem Lett 2006;16(24):6298–301.10.1016/j.bmcl.2006.09.020Search in Google Scholar
[30] Sharman WM, van Lier JE, Allen CM. Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 2004;56(1):53–76.10.1016/j.addr.2003.08.015Search in Google Scholar
[31] Choi CF, Huang JD, Lo PC, Fong WP, Ng DK. Glycosylated zinc(II) phthalocyanines as efficient photosensitisers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org Biomol Chem 2008;6(12):2173–81.10.1039/b802212gSearch in Google Scholar
[32] Soares AR, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, Torres T. Synthesis of water-soluble phthalocyanines bearing four or eight D-galactose units. Carbohydr Res 2009;344(4):507–10.10.1016/j.carres.2008.12.009Search in Google Scholar
[33] Laville I, Figueiredo T, Loock B, Pigaglio S, Maillard P, Grierson DS, Carrez D, Croisy A, Blais J. Synthesis, cellular internalization and photodynamic activity of glucoconjugated derivatives of tri and tetra(meta-hydroxyphenyl)chlorins. Bioorg Med Chem 2003;11(8):1643–52.10.1016/S0968-0896(03)00050-6Search in Google Scholar
[34] Gerasimov OV, Boomer JA, Qualls MM, Thompson DH. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev 1999;38(3):317–38.10.1016/S0169-409X(99)00035-6Search in Google Scholar
[35] Shamay Y, Adar L, Ashkenasy G, David A. Light induced drug delivery into cancer cells. Biomaterials 2011;32(5):1377–86.10.1016/j.biomaterials.2010.10.029Search in Google Scholar
[36] Siejak A, Wróbel D, Siejak P, Olejarz B, Ion RM. Spectroscopic and photoelectric investigations of resonance effects in selected sulfonated phthalocyanines. Dyes Pigments 2009;83(3):281–90.10.1016/j.dyepig.2009.05.013Search in Google Scholar
[37] Ogunsipe A, Chen JY, Nyokong T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives – effects of substituents and solvents. New J Chem 2004;28(7):822–7.10.1039/B315319CSearch in Google Scholar
[38] Michelsen U, Kliesch H, Schnurpfeil G, Sobbi AK, Wöhrle D. Unsymmetrically substituted benzonaphthoporphyrazines: a new class of cationic photosensitizers for the photodynamic therapy of cancer. Photochem Photobiol 1996;64(4):694–701.10.1111/j.1751-1097.1996.tb03126.xSearch in Google Scholar
[39] Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 2003;650(1–3):131–40.10.1016/S0022-2860(03)00155-8Search in Google Scholar
[40] Mantareva V, Angelov I, Kussovski V, Dimitrov R, Lapok L, Wöhrle D. Photodynamic efficacy of water-soluble Si(IV) and Ge(IV) phthalocyanines towards Candida albicans planktonic and biofilm cultures. Eur J Med Chem 2011;46(9):4430–40.10.1016/j.ejmech.2011.07.015Search in Google Scholar
[41] Kuznetsova NA, Gretsova NS, Kalmykova EA, Makarova EA, Dashkevich SN, Negrimovskii VM, Kaliya OL, Luk’yanets EA. Relationship between the photochemical properties and structure of pophyrins and related compounds. Rus J Gen Chem 2000;70(1):133–40.Search in Google Scholar
[42] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1–2):55–63.10.1016/0022-1759(83)90303-4Search in Google Scholar
[43] Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985;24(2–3):119–24.10.1016/0378-4274(85)90046-3Search in Google Scholar
[44] European Centre for the Validation of Alternative Methods (ECVAM). 3T3 Neutral Red Uptake (NRU) Phototoxicity Assay. DB-ALM Protocol n° 78. http://ecvam-dbalm.jrc.ec.europa.eu/public_view_doc2.cfm?id=736F27E9E9F7A9D869FB48087878D2497180BB0BC12CB10496CDA74B54630A05A3291B895581F634 [Accessed on March 16, 2016].Search in Google Scholar
[45] Ribeiro AO, Tomé JPC, Neves MGP, Tomé AC, Cavaleiro J, Iamamoto Y, Torres T. [1,2,3,4-Tetrakis(α/β-D-galactopyranos-6-yl)phthalocyaninato]zinc(II): a water-soluble phthalocyanine. Tetrahedron Lett 2006;47(52):9177–80.10.1016/j.tetlet.2006.10.155Search in Google Scholar
[46] Alvares-Mico X, Calvete MJF, Hanack M, Ziegler T. Expeditious synthesis of glycosylated phthalocyanines. Synthesis 2007;14:2186–92.10.1002/chin.200747179Search in Google Scholar
[47] Mantareva V, Kril A, Dimitrov R, Wöhrle D, Angelov I. Selective photodynamic therapy induced by preirradiation of galactopyranosyl Zn(II) phthalocyanines with UV and red lights. J Porphyr Phthalocyanines 2013;17(6–7):529–39.10.1142/S1088424613500466Search in Google Scholar
[48] Mantareva V, Kril A, Angelov I, Dimitrov R, Borisova E, Avramov L. Effects of the position of galactose units to Zn(II) phthalocyanine on the uptake and photodynamic activity towards breast cancer cells. Proc SPIE 2012;8427:842743.10.1117/12.923794Search in Google Scholar
[49] Günsel A, Yaraşir MN, Kandaz M, Koca A. Synthesis, H- or J-type aggregations, electrochemistry and in situ spectroelectrochemistry of metal ion sensing lead(II) phthalocyanines. Polyhedron 2010;29(18):3394–404.10.1016/j.poly.2010.09.035Search in Google Scholar
[50] Nyokong T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 2007;251(13–14):1707–22.10.1016/j.ccr.2006.11.011Search in Google Scholar
[51] Kuimova MK, Yahioglu G, Ogilby PR. Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants. J Am Chem Soc 2009;131(1):332–40.10.1021/ja807484bSearch in Google Scholar PubMed
[52] Durmuş M, Nyokong T. Synthesis, photophysical and photochemical properties of tetra- and octa-substituted gallium and indium phthalocyanines. Polyhedron 2007;26(13):3323–35.10.1016/j.poly.2007.03.007Search in Google Scholar
[53] Iqbal Z, Masilela N, Nyokong T, Lyubimtsev A, Hanack M, Ziegler T. Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Photochem Photobiol Sci 2012;11(4):679–86.10.1039/c2pp05348aSearch in Google Scholar PubMed
[54] Zorlu Y, Ermeydan MA, Dumoulin F, Ahsen V, Savoie H, Boyle RW. Glycerol and galactose substituted zinc phthalocyanines. Synthesis and photodynamic activity. Photochem Photobiol Sci 2009;8(3):312–8.10.1039/b817348fSearch in Google Scholar
[55] Lyubimtsev A, Iqbal Z, Crucius G, Syrbu S, Taraymovich ES, Ziegler T, Hanack M. Aggregation behavior and UV-vis spectra of tetra- and octaglycosylated zinc phthalocyanines. J Porphyr Phthalocyanines 2011;15(1):39–46.10.1142/S1088424611002891Search in Google Scholar
[56] Yamada K, Kakehi K. Recent advances in the analysis of carbohydrates for biomedical use. J Pharm Biomed Anal 2011;55(4):702–27.10.1016/j.jpba.2011.02.003Search in Google Scholar
[57] Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 2008;18(10):761–9.10.1093/glycob/cwn063Search in Google Scholar
[58] Dwek MV, Ross HA, Streets AJ, Brooks SA, Adam E, Titcomb A, Woodside JV, Schumacher U, Leathem AJ. Helix pomatia agglutinin lectin-binding oligosaccharides of aggressive breast cancer. Int J Cancer 2001;95(2):79–85.10.1002/1097-0215(20010320)95:2<79::AID-IJC1014>3.0.CO;2-ESearch in Google Scholar
[59] Vittar NB, Prucca CG, Strassert C, Awruch J, Rivarola VA. Cellular inactivation and antitumor efficacy of a new zinc phthalocyanine with potential use in photodynamic therapy. Int J Biochem Cell Biol 2008;40(10):2192–205.10.1016/j.biocel.2008.02.024Search in Google Scholar
[60] Mroz P, Bhaumik J, Dogutan DK, Aly Z, Kamal Z, Khalid L, Kee HL, Bocian DF, Holten D, Lindsey JS, Hamblin MR. Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: role of molecular charge, central metal and hydroxyl radical production. Cancer Lett 2009;282(1):63–76.10.1016/j.canlet.2009.02.054Search in Google Scholar
[61] Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother 2000;44(3):522–7.10.1128/AAC.44.3.522-527.2000Search in Google Scholar
[62] Angelov I, Mantareva V, Kussovski V, Woehrle D, Borisova E, Avramov L. Improved antimicrobial therapy with cationic tetra- and octa-substituted phthalocyanines. Proc SPIE 2008;7027:702717.10.1117/12.822519Search in Google Scholar
[63] Berg K, Høgset A, Prasmickaite L, Weyergang A, Bonsted A, Dietze A, Lou PJ, Bown S, Norum OJ, Møllergård H, Selbo PK. Photochemical internalization (PCI): a novel technology for activation of endocytosed therapeutic agents. Med Laser Appl 2006;21(4):239–50.10.1016/j.mla.2006.08.004Search in Google Scholar
[64] Konan YN, Chevallier J, Gurny R, Allémann E. Encapsulation of p-THPP into nanoparticles: cellular uptake, subcellular localization and effect of serum on photodynamic activity. Photochem Photobiol 2003;77(6):638–44.10.1562/0031-8655(2003)077<0638:EOPINC>2.0.CO;2Search in Google Scholar
[65] Rodal GH, Rodal SK, Moan J, Berg K. Liposome-bound Zn (II)-phthalocyanine. Mechanisms for cellular uptake and photosensitization. J Photochem Photobiol B 1998;45(2–3):150–9.10.1016/S1011-1344(98)00175-4Search in Google Scholar
[66] Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. J Control Release 2012;161(2):307–16.10.1016/j.jconrel.2012.04.040Search in Google Scholar PubMed
[67] Backer MV, Backer JM. Imaging key biomarkers of tumor angiogenesis. Theranostics 2012;2(5):502–15.10.7150/thno.3623Search in Google Scholar PubMed PubMed Central
[68] Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D, Monson TC, Trujillo JE, Tessier TE, Bryant HC, Huber DL, Larson RS, Flynn ER. Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 2011;13(5):R108.10.1186/bcr3050Search in Google Scholar PubMed PubMed Central
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- From optical bioimaging to clinical biophotonics
- Magazine section
- Snapshots
- Review
- Photodynamic therapy for cancer of the pancreas – The story so far
- Original contributions
- Fluorescence imaging for photodynamic therapy of non-melanoma skin malignancies – A retrospective clinical study
- Hydrogen peroxide detection in viable and apoptotic tumor cells under action of cisplatin and bleomycin
- Light enhancement of in vitro antitumor activity of galactosylated phthalocyanines
- Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers
- Preliminary research reports
- Enhancement of OCT imaging by blood optical clearing in vessels – A feasibility study
- Effect of temperature regime and compression in OCT imaging of skin in vivo
- Congress announcements
- Congresses 2016
Articles in the same Issue
- Frontmatter
- Editorial
- From optical bioimaging to clinical biophotonics
- Magazine section
- Snapshots
- Review
- Photodynamic therapy for cancer of the pancreas – The story so far
- Original contributions
- Fluorescence imaging for photodynamic therapy of non-melanoma skin malignancies – A retrospective clinical study
- Hydrogen peroxide detection in viable and apoptotic tumor cells under action of cisplatin and bleomycin
- Light enhancement of in vitro antitumor activity of galactosylated phthalocyanines
- Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers
- Preliminary research reports
- Enhancement of OCT imaging by blood optical clearing in vessels – A feasibility study
- Effect of temperature regime and compression in OCT imaging of skin in vivo
- Congress announcements
- Congresses 2016