Startseite Metrics for green syntheses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metrics for green syntheses

  • Marco Eissen , Giacomo Trapasso ORCID logo , James Clark , Fabio Aricò ORCID logo EMAIL logo , John Andraos EMAIL logo und Pietro Tundo ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. September 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

Despite being introduced approximately 30 years ago, green metrics are still not widely implemented in the practice of Green Chemistry. Nowadays, there is a general desire and fashion for Green Chemistry considering the modern global concerns of climate change and resource scarcity. However, the scientific literature reveals a confusing array of definitions and methodologies related to green metrics, particularly in both organic and inorganic chemistry. In this review we want to focus on organic synthesis, namely new reaction pathways that employ organic and inorganic catalysts, grounded in fundamental chemistry. The application of rigorous green metrics must go along with the experimental validation of synthetic procedures. This is essential to establish clear guidelines for defining truly green synthetic approaches, and to prevent misunderstandings or overreaching claims that are based on subjective rather than objective assessments. This work originated from an IUPAC project aimed at providing standardized guidance for the use of green metrics. Accordingly, we present a list of green metrics and related terminology currently employed to assess material usage, energy efficiency, and environmental impact in individual reactions and synthetic strategies.


Corresponding authors: Fabio Aricò, Environmental Science, Informatics and Statistics, Cà Foscari University, Venice, Italy, e-mail: ; John Andraos, CareerChem, Toronto, ON, Canada, e-mail: ; and Pietro Tundo, University of Venice, Venice, Italy, e-mail:

Award Identifier / Grant number: DoE 2023-2027 (MUR, AIS.DIP.ECCELLENZA2023_27.FF p

Acknowledgments

This work was supported by the DoE 2023–2027 (MUR,AIS.DIP.ECCELLENZA2023_27.FF project).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, writing and supervision: John Andraos, Pietro Tundo, Marco Eissen and Fabio Aricò; Data curation and Writing – original draft: Marco Eissen and Fabio Aricò; Revision and wring: Giacomo Trapasso, James Clark.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: IUPAC Project No.: 2017-030-2-041.

  7. Data availability: Not applicable.

References

1. Sheldon, R. A. ACS Sustainable Chem. Eng. 2018, 6, 32. https://doi.org/10.1021/acssuschemeng.7b03505.Suche in Google Scholar

2. Andraos, J.; Mastronardi, M. L.; Hoch, L. B.; Hent, A. ACS Sust. Chem. Eng. 2016, 4, 1934. https://doi.org/10.1021/acssuschemeng.5b01555.Suche in Google Scholar

3. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; p. 30. By permission of Oxford University Press.Suche in Google Scholar

4. Anastas, P.; Eghbalia, N. Chem. Soc. Rev. 2010, 39, 301. https://doi.org/10.1039/B918763B.Suche in Google Scholar PubMed

5. The Oxford Dictionary of Quotations, 2nd ed., Oxford University Press: London, 1955; p. 172.Suche in Google Scholar

6. Noyori, R.; Richmond, J. P. Adv. Synth. Catal. 2013, 355, 3. https://doi.org/10.1002/adsc.201201128.Suche in Google Scholar

7. The United Nations UN Sub-Committee of Experts on the Globally Harmonized System of Classification and Labelling of Chemicals. Nat. Chem. 2011, 3, 337 (editorial). https://doi.org/10.1038/nchem.1042.Suche in Google Scholar PubMed

8. Fang, F. C.; Steen, R. G.; Casadevall, A. Proc. Nat. Acad. Sci. 2012, 109, 17028. https://doi.org/10.1073/pnas.1212247109.Suche in Google Scholar PubMed PubMed Central

9. Laird, T. Org. Proc. Res. Dev. 2013, 17, 317. https://doi.org/10.1021/op400029f.Suche in Google Scholar

10. Van Noorden, R. Nature 2011, 478, 26. https://doi.org/10.1038/478026a.Suche in Google Scholar PubMed

11. Cornforth, J. Chem. Brit. 1975, 11, 432.10.1007/BF00719433Suche in Google Scholar

12. Cornforth, J. W. Austr. J. Chem. 1993, 46, 157.10.1071/CH9930157Suche in Google Scholar

13. Wernerova, M.; Hudlicky, T. Synlett 2010, 18, 2701; https://doi.org/10.1055/s-0030-1259018.Suche in Google Scholar

14. Kovac, P. Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 1; CRC Press: Boca Raton, 2012; p. xix.Suche in Google Scholar

15. Danheiser, R. L. Org. Synth. 2011, 88, 1.10.15227/orgsyn.088.0001Suche in Google Scholar

16. Laird, T. Org. Proc. Res. Dev. 2011, 15, 305. https://doi.org/10.1021/op2000404.Suche in Google Scholar

17. Laird, T. Org. Proc. Res. Dev. 2011, 15, 729.10.1021/op200134mSuche in Google Scholar

18. Laird, T. Org. Proc. Res. Dev. 2012, 16, 1. https://doi.org/10.1021/op200134m.Suche in Google Scholar

19. Tucker, J. L. Org. Proc. Res. Dev. 2006, 10, 315. https://doi.org/10.1021/op050227k.Suche in Google Scholar

20. Tucker, J. L. Org. Process Res. Dev. 2010, 14, 328. https://doi.org/10.1021/op9000548.Suche in Google Scholar

21. Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337. https://doi.org/10.1039/B602413K.Suche in Google Scholar PubMed

22. Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411. https://doi.org/10.1039/B703488C.Suche in Google Scholar

23. Warhurst, M. Green Chem. 2002, 4, G20; https://doi.org/10.1039/b202354g.Suche in Google Scholar

24. Diehlmann, A.; Kreisel, G. Green Chem. 2002, 4, G15; https://doi.org/10.1039/b202354g.Suche in Google Scholar

25. Watson, W. J. W. Green Chem. 2012, 14, 251. https://doi.org/10.1039/C1GC15904F.Suche in Google Scholar

26. Welton, T. Green Chem. 2011, 13, 225. https://doi.org/10.1039/C0GC90047H.Suche in Google Scholar

27. Bennett, G. D. Green Chemistry as an Expression of Environmental Ethics. In Green Chemistry for Environmental Sustainability; Sharma, S. K.; Mudhoo, A., Eds.; CRC Press: Boca Raton, FL, 2010; p. 116.Suche in Google Scholar

28. Cespi, D. Green Chem. 2024, 26, 9554. https://doi.org/10.1039/D4GC01372G.Suche in Google Scholar

29. Mitchell, S.; Martín, A. J.; Guillén-Gosálbez, G.; Pérez-Ramírez, J. Angew. Chem.Int. Ed. 2024, 63, e202318676. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202318676.10.1002/anie.202318676Suche in Google Scholar PubMed

30. Lucas, E.; Martín, A. J.; Mitchell, S.; Nabera, A.; Santos, L. F.; Pérez-Ramírez, J.; Guillén-Gosálbez, G. Green Chem. 2024, 26, 9300. https://doi.org/10.1039/D4GC00394B.Suche in Google Scholar

31. Weber, J. M.; Guo, Z.; Zhang, C.; Schweidtmann, A. M.; Lapkin, A. A. Chem. Soc. Rev. 2021, 50, 12013. https://doi.org/10.1039/D1CS00477H.Suche in Google Scholar

32. https://www.scranton.edu/faculty/cannm/green-chemistry/english/organicmodule.shtml.Suche in Google Scholar

33. Aktoudianakis, E.; Chan, E.; Edward, A. R.; Jarosz, I.; Lee, V.; Mui, L.; Thatipamala, S. S.; Dicks, A. P. J. Chem. Ed. 2009, 86, 730. https://doi.org/10.1021/ed086p730.Suche in Google Scholar

34. Jimenez-Gonzalez, C. C.; Lund, C. Curr. Opin. Green Sust. 2022, 33, 100564. https://www.sciencedirect.com/science/article/pii/S2452223621001206.10.1016/j.cogsc.2021.100564Suche in Google Scholar

35. Sherer, E. C.; Bagchi, A.; Kosjek, B.; Maloney, K. M.; Peng, Z.; Robaire, S. A.; Sheridan, R. P.; Metwally, E.; Campeau, L.-C. Org. Process Res. Dev. 2022, 26, 1405. https://doi.org/10.1021/acs.oprd.1c00477.Suche in Google Scholar

36. Borovika, A.; Albrecht, J.; Li, J.; Wells, A. S.; Briddell, C.; Dillon, B. R.; Diorazio, L. J.; Gage, J. R.; Gallou, F.; Koenig, S. G.; Kopach, M. E.; Leahy, D. K.; Martinez, I.; Olbrich, M.; Piper, J. L.; Roschangar, F.; Sherer, E. C.; Eastgate, M. D. Nat. Sustain. 2019, 2, 1034. https://doi.org/10.1038/s41893-019-0400-5.Suche in Google Scholar

37. Diorazio, L. J.; Richardson, P.; Sneddon, H. F.; Moores, A.; Briddell, C.; Martinez, I. ACS Sustain. Chem. Eng. 2021, 9, 16862. https://doi.org/10.1021/acssuschemeng.1c07651.Suche in Google Scholar

38. Martínez, J.; Cortés, J. F.; Miranda, R. Processes 2022, 10, 1274. https://doi.org/10.3390/pr10071274.Suche in Google Scholar

39. Monteith, E. R.; Mampuys, P.; Summerton, L.; Clark, J. H.; Maes, B. U. W.; McElroy, C. R. Green Chem. 2020, 22, 123. <Go to ISI>://WOS:000505605500012.10.1039/C9GC01537JSuche in Google Scholar

40. Andraos, J. ACS Sustain. Chem. Eng. 2018, 6, 3206. https://doi.org/10.1021/acssuschemeng.7b03360.Suche in Google Scholar

41. Curzons, A. D.; Constable, D. J. C.; Mortimer, D. N.; Cunningham, V. L. Green Chem. 2001, 3, 1. https://doi.org/10.1039/B007871I.Suche in Google Scholar

42. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson; Blackwell Scientific Publications: Oxford, 1997. Online version (2019-) created by S. J. Chalk.Suche in Google Scholar

43. Lavoisier, A. Mèmoires de l’Académie Royale des Sci. 1775, 1778, 520.Suche in Google Scholar

44. Andraos, J. Application of Green Metrics Analysis to Chemical Reactions and Synthesis Plans. In Green Chemistry Metrics in Green Chemistry Metrics; Lapkin, Alexei; Constable, David C., Eds.; Blackwell Scientific: Oxford, 2008. Chapter 4; p. 84.10.1002/9781444305432.ch4Suche in Google Scholar

45. Watson, W. Org. Process Res. Dev. 2012, 16, 1877. https://doi.org/10.1021/op300317g.Suche in Google Scholar

46. Curzons, A. D.; Jiménez-González, C.; Duncan, A. L.; Constable, D. J. C.; Cunningham, V. L. Int. J. Life Cycle Assess. 2007, 12, 272.10.1065/lca2007.03.315Suche in Google Scholar

47. Andraos, J. Org. Process Res. Dev. 2005, 9, 404. https://doi.org/10.1021/op050014v.Suche in Google Scholar

48. Andraos, J.; Sayed, M. J. Chem. Educ. 2007, 84, 1004. https://doi.org/10.1021/ed084p1004.Suche in Google Scholar

49. Musier, R. F. H.; Evans, L. B. Chem. Eng. Progress 1990, 86, 66.Suche in Google Scholar

50. Andraos, J. Org. Process Res. Dev. 2006, 10, 212. https://doi.org/10.1021/op0501904.Suche in Google Scholar

51. Doxsee, K. M.; Hutchison, J. E. Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments; Brooks/Cole: Belmont, 2004.Suche in Google Scholar

52. Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A. Ind. Eng. Chem. Res. 2012, 51, 2309. https://doi.org/10.1021/ie102116e.Suche in Google Scholar

53. Calvo-Flores, F. G. ChemSusChem 2009, 2, 905. https://doi.org/10.1002/cssc.200900128.Suche in Google Scholar PubMed

54. Trost, B. M. Science 1991, 254, 1471; https://doi.org/10.1126/science.1962206.Suche in Google Scholar PubMed

55. Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259. https://doi.org/10.1002/anie.199502591.Suche in Google Scholar

56. Eissen, M.; Mazur, R.; Quebbemann, H.-G.; Pennemann, K.-H. Helv. Chim. Acta 2004, 87, 524.10.1002/hlca.200490050Suche in Google Scholar

57. Sheldon, R. Green Chem. 2017, 19, 18. https://doi.org/10.1039/C6GC02157C.Suche in Google Scholar

58. Sheldon, R. A. Green Chem. 2007, 9, 1273. https://doi.org/10.1039/B713736M.Suche in Google Scholar

59. Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. https://doi.org/10.1039/C1CS15219J.Suche in Google Scholar PubMed

60. Climent, M. J.; Corma, A.; Iborra, S.; Mifsud, M.; Velty, A. Green Chem. 2010, 12, 99. https://doi.org/10.1039/B919660A.Suche in Google Scholar

61. Li, J.; Simmons, E. M.; Eastgate, M. D. Green Chem. 2017, 19, 127. https://doi.org/10.1039/C6GC02359B.Suche in Google Scholar

62. Li, J.; Albrecht, J.; Borovika, A.; Eastgate, M. D. ACS Sust. Chem. Eng. 2018, 6, 1121. https://doi.org/10.1021/acssuschemeng.7b03407.Suche in Google Scholar

63. Andraos, J. ACS Sust. Chem. Eng. 2018, 6, 3206. https://doi.org/10.1021/acssuschemeng.7b03360.Suche in Google Scholar

64. Andraos, J. Green Process. Synth. 2019, 8, 787. https://doi.org/10.1515/gps-2019-0048.Suche in Google Scholar

65. Sheldon, R. A. ChemTech 1994, 24, 38.10.1108/eb040526Suche in Google Scholar

66. Eissen, M.; Hungerbühler, K.; Dirks, S.; Metzger, J. O. Green Chem. 2003, 5, G25. https://doi.org/10.1039/B301753M.Suche in Google Scholar

67. Ascaso, S.; Gàlvez, M. E.; Da Costa, P.; Moliner, R.; Elorri, M. J. L. C. R. Chimie 2015, 18, 1007. https://doi.org/10.1016/j.crci.2015.03.017.Suche in Google Scholar

68. Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Manley, J. B. Org. Process Res. Dev. 2011, 15, 912. https://doi.org/10.1021/op200097d.Suche in Google Scholar

69. Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Green Chem. 2002, 4, 521. https://doi.org/10.1039/B206169B.Suche in Google Scholar

70. Eissen, M. Pure Appl. Chem. 2022, 94, 215; https://doi.org/10.1515/pac-2021-0326.Suche in Google Scholar

71. Annatelli, M.; Sánchez-Velandia, J. E.; Mazzi, G.; Pandeirada, S. V.; Giannakoudakis, D.; Rautiainen, S.; Esposito, A.; Thiyagarajan, S.; Richel, A.; Triantafyllidis, K. S.; Robert, T.; Guigo, N.; Sousa, A. F.; García-Verdugo, E.; Aricò, F. Green Chem. 2024, 26, 8894. https://doi.org/10.1039/D4GC00784K.Suche in Google Scholar

72. Kjell, D. P.; Watson, I. A.; Wolfe, C. N.; Spitler, J. T. Org. Process Res. Dev. 2013, 17, 169. https://doi.org/10.1021/op3002917.Suche in Google Scholar

73. Andraos, J. Beilstein J. Org. Chem. 2020, 16, 2346. https://doi.org/10.3762/bjoc.16.196.Suche in Google Scholar PubMed PubMed Central

74. https://www.acsgcipr.org/tools-for-innovation-in-chemistry/process-mass-intensity-prediction-calculator/.Suche in Google Scholar

75. https://www.acs.org/content/dam/acsorg/greenchemistry/industriainnovation/roundtable/convergent-pmi-tool.xlsx.Suche in Google Scholar

76. https://chemistryforsustainability.org/tools?page=2&trk=public_post_main-feed-card-text.Suche in Google Scholar

77. www.chemspider.com.Suche in Google Scholar

78. http://www.reagent.co.uk/chemical-glossary/#clpregs.Suche in Google Scholar

79. https://en.wikipedia.org/wiki/CLP_Regulation.Suche in Google Scholar

80. https://echa.europa.eu/regulations/clp/legislation.Suche in Google Scholar

81. https://www.esig.org/regulatory/clp/.Suche in Google Scholar

82. https://en.wikipedia.org/wiki/Dangerous_goods.Suche in Google Scholar

83. https://en.wikipedia.org/wiki/Directive_67/548/EEC.Suche in Google Scholar

84. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al21276.Suche in Google Scholar

85. http://www.aiche.org/dippr/projects/801.Suche in Google Scholar

86. Eissen, M. Bewertung der Umweltverträglichkeit organisch-chemischer Synthesen; BIS-Verlag: Oldenburg, 2001.Suche in Google Scholar

87. Eissen, M.; Metzger, J. O. Chem. Eur. J. 2002, 8, 3580. https://doi.org/10.1002/1521-3765(20020816)8:16<3580::AID-CHEM3580>3.0.CO;2-J.10.1002/1521-3765(20020816)8:16<3580::AID-CHEM3580>3.0.CO;2-JSuche in Google Scholar

88. Toniolo, S.; Aricò, F.; Tundo, P. ACS Sustainable Chem. Eng. 2014, 2, 1056. https://doi.org/10.1021/sc500070t.Suche in Google Scholar

89. Eissen, M. Chem. Educ. Res. Pract. 2012, 13, 103. https://doi.org/10.1039/C2RP90002E.Suche in Google Scholar

90. www.metzger.chemie.uni-oldenburg.de/eatos/english.htm (registration required).Suche in Google Scholar

91. https://ecoscale.cheminfo.org/.Suche in Google Scholar

92. Van Aken, K.; Strekowski, L.; Patiny, L. Beilstein J. Org. Chem. 2006, 2, 3. https://doi.org/10.1186/1860-5397-2-3.Suche in Google Scholar

93. Trapasso, G.; Mazzi, G.; Chícharo, B.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Org. Process Res. Dev. 2022, 26, 2830. https://doi.org/10.1021/acs.oprd.2c00196.Suche in Google Scholar

94. A Guide to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS); United Nations: New York, 2015; p 90.Suche in Google Scholar

95. Globally Harmonized System of Classification and Labeling of Chemicals (GHS), “The Purple Book”; United Nations: New York.Suche in Google Scholar

96. Globally Harmonized System of Classification and Labeling of Chemicals (GHS), United Nations: New York, 4th ed., 2011, ST/SG/AC.10/30/Rev.4; p. 568.Suche in Google Scholar

97. https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf.Suche in Google Scholar

98. https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals.Suche in Google Scholar

99. Ribeiro, M. G. T. C.; Costa, D. A.; Machado, A. A. S. C. Green Chem. Lett. Rev. 2010, 3, 149. https://doi.org/10.1080/17518251003623376.Suche in Google Scholar

100. https://chemicalsafety.com/sds-search/.Suche in Google Scholar

101. https://en.wikipedia.org/wiki/Safety_data_sheet.Suche in Google Scholar

102. Mackay, D.; Shiu, W. Y.; Ma, K. C.; Lee, S. C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol. 1−4; CRC Press: Boca Raton, FL, 2006.10.1201/9781420044393Suche in Google Scholar

103. Mackay, D.; Arnot, J. A.; Webster, E.; Reid, L. In Ecotoxicology Modeling, Emerging Topics in Ecotoxicology: Principles, Approaches, and Perspectives; Devillers, J., Ed.; Springer Science: New York, 2009.Suche in Google Scholar

104. Mackay, D.; Arnot, J. A. J. Chem. Eng. Data 2011, 56, 1348. https://doi.org/10.1021/je101158y.Suche in Google Scholar

105. Mackay, D. Environ. Sci. Technol. 1979, 13, 1218. https://doi.org/10.1021/es60158a003.Suche in Google Scholar

106. Mackay, D.; Paterson, S. Environ. Sci. Technol. 1981, 15, 1006. https://doi.org/10.1021/es00091a001.Suche in Google Scholar PubMed

107. Mackay, D.; Paterson, S. Environ. Sci. Technol. 1982, 16, 654A. https://doi.org/10.1021/es00106a001.Suche in Google Scholar

108. Guinée, J. B., Ed.;Handbook on Life Cycle Assessment; Kluwer Academic Publishers: Dordrecht, 2002.Suche in Google Scholar

109. Mercer, S. M.; Andraos, J.; Jessop, P. G. J. Chem. Educ. 2012, 89, 215. https://doi.org/10.1021/ed200249v.Suche in Google Scholar

110. http://law.resource.org/pub/us/cfr/ibr/004/nfpa.704.2007.pdf.Suche in Google Scholar

111. National Institute for Occupational Safety and Health Staff. NIOSH Pocket Guide to Chemical Hazards; National Institute for Occupational Safety and Health; Centers for Disease Control and Prevention: Atlanta, GA; September Publication No. 2005-149, 2007. http://www.cdc.gov/niosh.Suche in Google Scholar

112. https://en.wikipedia.org/w/index.php?title=Registration,_Evaluation,_Authorisation_and_Restriction_of_Chemicals&oldid=776015218, https://echa.europa.eu/regulations/reach.Suche in Google Scholar

113. https://en.wikipedia.org/w/index.php?title=Registry_of_Toxic_Effects_of_Chemical_Substances&oldid=739902659.Suche in Google Scholar

114. https://www.acsgcipr.org/tools-for-innovation-in-chemistry/solvent-tool/.Suche in Google Scholar

115. https://learning.acsgcipr.org/guides-and-metrics/solvent-selection-guides/the-chem21-solvent-selection-guide/.Suche in Google Scholar

116. Diorazio, L. J.; Hose, D. R. J.; Adlington, N. K. Org. Process Res. Dev. 2016, 20, 760; https://doi.org/10.1021/acs.oprd.6b00015.Suche in Google Scholar

117. http://www.hc-sc.gc.ca/ewh-semt/occup-travail/whmis-simdut/ghs-sgh/index-eng.php.Suche in Google Scholar

118. http://whmis.org/.Suche in Google Scholar

119. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/occupational-health-safety/workplace-hazardous-materials-information-system.html.Suche in Google Scholar

120. https://en.wikipedia.org/wiki/Workplace_Hazardous_Materials_Information_System.Suche in Google Scholar

Received: 2025-08-14
Accepted: 2025-09-08
Published Online: 2025-09-15

© 2025 IUPAC & De Gruyter

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0553/html
Button zum nach oben scrollen