Abstract
Despite being introduced approximately 30 years ago, green metrics are still not widely implemented in the practice of Green Chemistry. Nowadays, there is a general desire and fashion for Green Chemistry considering the modern global concerns of climate change and resource scarcity. However, the scientific literature reveals a confusing array of definitions and methodologies related to green metrics, particularly in both organic and inorganic chemistry. In this review we want to focus on organic synthesis, namely new reaction pathways that employ organic and inorganic catalysts, grounded in fundamental chemistry. The application of rigorous green metrics must go along with the experimental validation of synthetic procedures. This is essential to establish clear guidelines for defining truly green synthetic approaches, and to prevent misunderstandings or overreaching claims that are based on subjective rather than objective assessments. This work originated from an IUPAC project aimed at providing standardized guidance for the use of green metrics. Accordingly, we present a list of green metrics and related terminology currently employed to assess material usage, energy efficiency, and environmental impact in individual reactions and synthetic strategies.
Funding source: Ministero dell’Istruzione, dell’Università e della Ricerca
Award Identifier / Grant number: DoE 2023-2027 (MUR, AIS.DIP.ECCELLENZA2023_27.FF p
Acknowledgments
This work was supported by the DoE 2023–2027 (MUR,AIS.DIP.ECCELLENZA2023_27.FF project).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization, writing and supervision: John Andraos, Pietro Tundo, Marco Eissen and Fabio Aricò; Data curation and Writing – original draft: Marco Eissen and Fabio Aricò; Revision and wring: Giacomo Trapasso, James Clark.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: IUPAC Project No.: 2017-030-2-041.
-
Data availability: Not applicable.
References
1. Sheldon, R. A. ACS Sustainable Chem. Eng. 2018, 6, 32. https://doi.org/10.1021/acssuschemeng.7b03505.Suche in Google Scholar
2. Andraos, J.; Mastronardi, M. L.; Hoch, L. B.; Hent, A. ACS Sust. Chem. Eng. 2016, 4, 1934. https://doi.org/10.1021/acssuschemeng.5b01555.Suche in Google Scholar
3. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; p. 30. By permission of Oxford University Press.Suche in Google Scholar
4. Anastas, P.; Eghbalia, N. Chem. Soc. Rev. 2010, 39, 301. https://doi.org/10.1039/B918763B.Suche in Google Scholar PubMed
5. The Oxford Dictionary of Quotations, 2nd ed., Oxford University Press: London, 1955; p. 172.Suche in Google Scholar
6. Noyori, R.; Richmond, J. P. Adv. Synth. Catal. 2013, 355, 3. https://doi.org/10.1002/adsc.201201128.Suche in Google Scholar
7. The United Nations UN Sub-Committee of Experts on the Globally Harmonized System of Classification and Labelling of Chemicals. Nat. Chem. 2011, 3, 337 (editorial). https://doi.org/10.1038/nchem.1042.Suche in Google Scholar PubMed
8. Fang, F. C.; Steen, R. G.; Casadevall, A. Proc. Nat. Acad. Sci. 2012, 109, 17028. https://doi.org/10.1073/pnas.1212247109.Suche in Google Scholar PubMed PubMed Central
9. Laird, T. Org. Proc. Res. Dev. 2013, 17, 317. https://doi.org/10.1021/op400029f.Suche in Google Scholar
10. Van Noorden, R. Nature 2011, 478, 26. https://doi.org/10.1038/478026a.Suche in Google Scholar PubMed
11. Cornforth, J. Chem. Brit. 1975, 11, 432.10.1007/BF00719433Suche in Google Scholar
12. Cornforth, J. W. Austr. J. Chem. 1993, 46, 157.10.1071/CH9930157Suche in Google Scholar
13. Wernerova, M.; Hudlicky, T. Synlett 2010, 18, 2701; https://doi.org/10.1055/s-0030-1259018.Suche in Google Scholar
14. Kovac, P. Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 1; CRC Press: Boca Raton, 2012; p. xix.Suche in Google Scholar
15. Danheiser, R. L. Org. Synth. 2011, 88, 1.10.15227/orgsyn.088.0001Suche in Google Scholar
16. Laird, T. Org. Proc. Res. Dev. 2011, 15, 305. https://doi.org/10.1021/op2000404.Suche in Google Scholar
17. Laird, T. Org. Proc. Res. Dev. 2011, 15, 729.10.1021/op200134mSuche in Google Scholar
18. Laird, T. Org. Proc. Res. Dev. 2012, 16, 1. https://doi.org/10.1021/op200134m.Suche in Google Scholar
19. Tucker, J. L. Org. Proc. Res. Dev. 2006, 10, 315. https://doi.org/10.1021/op050227k.Suche in Google Scholar
20. Tucker, J. L. Org. Process Res. Dev. 2010, 14, 328. https://doi.org/10.1021/op9000548.Suche in Google Scholar
21. Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337. https://doi.org/10.1039/B602413K.Suche in Google Scholar PubMed
22. Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411. https://doi.org/10.1039/B703488C.Suche in Google Scholar
23. Warhurst, M. Green Chem. 2002, 4, G20; https://doi.org/10.1039/b202354g.Suche in Google Scholar
24. Diehlmann, A.; Kreisel, G. Green Chem. 2002, 4, G15; https://doi.org/10.1039/b202354g.Suche in Google Scholar
25. Watson, W. J. W. Green Chem. 2012, 14, 251. https://doi.org/10.1039/C1GC15904F.Suche in Google Scholar
26. Welton, T. Green Chem. 2011, 13, 225. https://doi.org/10.1039/C0GC90047H.Suche in Google Scholar
27. Bennett, G. D. Green Chemistry as an Expression of Environmental Ethics. In Green Chemistry for Environmental Sustainability; Sharma, S. K.; Mudhoo, A., Eds.; CRC Press: Boca Raton, FL, 2010; p. 116.Suche in Google Scholar
28. Cespi, D. Green Chem. 2024, 26, 9554. https://doi.org/10.1039/D4GC01372G.Suche in Google Scholar
29. Mitchell, S.; Martín, A. J.; Guillén-Gosálbez, G.; Pérez-Ramírez, J. Angew. Chem.Int. Ed. 2024, 63, e202318676. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202318676.10.1002/anie.202318676Suche in Google Scholar PubMed
30. Lucas, E.; Martín, A. J.; Mitchell, S.; Nabera, A.; Santos, L. F.; Pérez-Ramírez, J.; Guillén-Gosálbez, G. Green Chem. 2024, 26, 9300. https://doi.org/10.1039/D4GC00394B.Suche in Google Scholar
31. Weber, J. M.; Guo, Z.; Zhang, C.; Schweidtmann, A. M.; Lapkin, A. A. Chem. Soc. Rev. 2021, 50, 12013. https://doi.org/10.1039/D1CS00477H.Suche in Google Scholar
32. https://www.scranton.edu/faculty/cannm/green-chemistry/english/organicmodule.shtml.Suche in Google Scholar
33. Aktoudianakis, E.; Chan, E.; Edward, A. R.; Jarosz, I.; Lee, V.; Mui, L.; Thatipamala, S. S.; Dicks, A. P. J. Chem. Ed. 2009, 86, 730. https://doi.org/10.1021/ed086p730.Suche in Google Scholar
34. Jimenez-Gonzalez, C. C.; Lund, C. Curr. Opin. Green Sust. 2022, 33, 100564. https://www.sciencedirect.com/science/article/pii/S2452223621001206.10.1016/j.cogsc.2021.100564Suche in Google Scholar
35. Sherer, E. C.; Bagchi, A.; Kosjek, B.; Maloney, K. M.; Peng, Z.; Robaire, S. A.; Sheridan, R. P.; Metwally, E.; Campeau, L.-C. Org. Process Res. Dev. 2022, 26, 1405. https://doi.org/10.1021/acs.oprd.1c00477.Suche in Google Scholar
36. Borovika, A.; Albrecht, J.; Li, J.; Wells, A. S.; Briddell, C.; Dillon, B. R.; Diorazio, L. J.; Gage, J. R.; Gallou, F.; Koenig, S. G.; Kopach, M. E.; Leahy, D. K.; Martinez, I.; Olbrich, M.; Piper, J. L.; Roschangar, F.; Sherer, E. C.; Eastgate, M. D. Nat. Sustain. 2019, 2, 1034. https://doi.org/10.1038/s41893-019-0400-5.Suche in Google Scholar
37. Diorazio, L. J.; Richardson, P.; Sneddon, H. F.; Moores, A.; Briddell, C.; Martinez, I. ACS Sustain. Chem. Eng. 2021, 9, 16862. https://doi.org/10.1021/acssuschemeng.1c07651.Suche in Google Scholar
38. Martínez, J.; Cortés, J. F.; Miranda, R. Processes 2022, 10, 1274. https://doi.org/10.3390/pr10071274.Suche in Google Scholar
39. Monteith, E. R.; Mampuys, P.; Summerton, L.; Clark, J. H.; Maes, B. U. W.; McElroy, C. R. Green Chem. 2020, 22, 123. <Go to ISI>://WOS:000505605500012.10.1039/C9GC01537JSuche in Google Scholar
40. Andraos, J. ACS Sustain. Chem. Eng. 2018, 6, 3206. https://doi.org/10.1021/acssuschemeng.7b03360.Suche in Google Scholar
41. Curzons, A. D.; Constable, D. J. C.; Mortimer, D. N.; Cunningham, V. L. Green Chem. 2001, 3, 1. https://doi.org/10.1039/B007871I.Suche in Google Scholar
42. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson; Blackwell Scientific Publications: Oxford, 1997. Online version (2019-) created by S. J. Chalk.Suche in Google Scholar
43. Lavoisier, A. Mèmoires de l’Académie Royale des Sci. 1775, 1778, 520.Suche in Google Scholar
44. Andraos, J. Application of Green Metrics Analysis to Chemical Reactions and Synthesis Plans. In Green Chemistry Metrics in Green Chemistry Metrics; Lapkin, Alexei; Constable, David C., Eds.; Blackwell Scientific: Oxford, 2008. Chapter 4; p. 84.10.1002/9781444305432.ch4Suche in Google Scholar
45. Watson, W. Org. Process Res. Dev. 2012, 16, 1877. https://doi.org/10.1021/op300317g.Suche in Google Scholar
46. Curzons, A. D.; Jiménez-González, C.; Duncan, A. L.; Constable, D. J. C.; Cunningham, V. L. Int. J. Life Cycle Assess. 2007, 12, 272.10.1065/lca2007.03.315Suche in Google Scholar
47. Andraos, J. Org. Process Res. Dev. 2005, 9, 404. https://doi.org/10.1021/op050014v.Suche in Google Scholar
48. Andraos, J.; Sayed, M. J. Chem. Educ. 2007, 84, 1004. https://doi.org/10.1021/ed084p1004.Suche in Google Scholar
49. Musier, R. F. H.; Evans, L. B. Chem. Eng. Progress 1990, 86, 66.Suche in Google Scholar
50. Andraos, J. Org. Process Res. Dev. 2006, 10, 212. https://doi.org/10.1021/op0501904.Suche in Google Scholar
51. Doxsee, K. M.; Hutchison, J. E. Green Organic Chemistry: Strategies, Tools, and Laboratory Experiments; Brooks/Cole: Belmont, 2004.Suche in Google Scholar
52. Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A. Ind. Eng. Chem. Res. 2012, 51, 2309. https://doi.org/10.1021/ie102116e.Suche in Google Scholar
53. Calvo-Flores, F. G. ChemSusChem 2009, 2, 905. https://doi.org/10.1002/cssc.200900128.Suche in Google Scholar PubMed
54. Trost, B. M. Science 1991, 254, 1471; https://doi.org/10.1126/science.1962206.Suche in Google Scholar PubMed
55. Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259. https://doi.org/10.1002/anie.199502591.Suche in Google Scholar
56. Eissen, M.; Mazur, R.; Quebbemann, H.-G.; Pennemann, K.-H. Helv. Chim. Acta 2004, 87, 524.10.1002/hlca.200490050Suche in Google Scholar
57. Sheldon, R. Green Chem. 2017, 19, 18. https://doi.org/10.1039/C6GC02157C.Suche in Google Scholar
58. Sheldon, R. A. Green Chem. 2007, 9, 1273. https://doi.org/10.1039/B713736M.Suche in Google Scholar
59. Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437. https://doi.org/10.1039/C1CS15219J.Suche in Google Scholar PubMed
60. Climent, M. J.; Corma, A.; Iborra, S.; Mifsud, M.; Velty, A. Green Chem. 2010, 12, 99. https://doi.org/10.1039/B919660A.Suche in Google Scholar
61. Li, J.; Simmons, E. M.; Eastgate, M. D. Green Chem. 2017, 19, 127. https://doi.org/10.1039/C6GC02359B.Suche in Google Scholar
62. Li, J.; Albrecht, J.; Borovika, A.; Eastgate, M. D. ACS Sust. Chem. Eng. 2018, 6, 1121. https://doi.org/10.1021/acssuschemeng.7b03407.Suche in Google Scholar
63. Andraos, J. ACS Sust. Chem. Eng. 2018, 6, 3206. https://doi.org/10.1021/acssuschemeng.7b03360.Suche in Google Scholar
64. Andraos, J. Green Process. Synth. 2019, 8, 787. https://doi.org/10.1515/gps-2019-0048.Suche in Google Scholar
65. Sheldon, R. A. ChemTech 1994, 24, 38.10.1108/eb040526Suche in Google Scholar
66. Eissen, M.; Hungerbühler, K.; Dirks, S.; Metzger, J. O. Green Chem. 2003, 5, G25. https://doi.org/10.1039/B301753M.Suche in Google Scholar
67. Ascaso, S.; Gàlvez, M. E.; Da Costa, P.; Moliner, R.; Elorri, M. J. L. C. R. Chimie 2015, 18, 1007. https://doi.org/10.1016/j.crci.2015.03.017.Suche in Google Scholar
68. Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Manley, J. B. Org. Process Res. Dev. 2011, 15, 912. https://doi.org/10.1021/op200097d.Suche in Google Scholar
69. Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Green Chem. 2002, 4, 521. https://doi.org/10.1039/B206169B.Suche in Google Scholar
70. Eissen, M. Pure Appl. Chem. 2022, 94, 215; https://doi.org/10.1515/pac-2021-0326.Suche in Google Scholar
71. Annatelli, M.; Sánchez-Velandia, J. E.; Mazzi, G.; Pandeirada, S. V.; Giannakoudakis, D.; Rautiainen, S.; Esposito, A.; Thiyagarajan, S.; Richel, A.; Triantafyllidis, K. S.; Robert, T.; Guigo, N.; Sousa, A. F.; García-Verdugo, E.; Aricò, F. Green Chem. 2024, 26, 8894. https://doi.org/10.1039/D4GC00784K.Suche in Google Scholar
72. Kjell, D. P.; Watson, I. A.; Wolfe, C. N.; Spitler, J. T. Org. Process Res. Dev. 2013, 17, 169. https://doi.org/10.1021/op3002917.Suche in Google Scholar
73. Andraos, J. Beilstein J. Org. Chem. 2020, 16, 2346. https://doi.org/10.3762/bjoc.16.196.Suche in Google Scholar PubMed PubMed Central
74. https://www.acsgcipr.org/tools-for-innovation-in-chemistry/process-mass-intensity-prediction-calculator/.Suche in Google Scholar
75. https://www.acs.org/content/dam/acsorg/greenchemistry/industriainnovation/roundtable/convergent-pmi-tool.xlsx.Suche in Google Scholar
76. https://chemistryforsustainability.org/tools?page=2&trk=public_post_main-feed-card-text.Suche in Google Scholar
77. www.chemspider.com.Suche in Google Scholar
78. http://www.reagent.co.uk/chemical-glossary/#clpregs.Suche in Google Scholar
79. https://en.wikipedia.org/wiki/CLP_Regulation.Suche in Google Scholar
80. https://echa.europa.eu/regulations/clp/legislation.Suche in Google Scholar
81. https://www.esig.org/regulatory/clp/.Suche in Google Scholar
82. https://en.wikipedia.org/wiki/Dangerous_goods.Suche in Google Scholar
83. https://en.wikipedia.org/wiki/Directive_67/548/EEC.Suche in Google Scholar
84. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al21276.Suche in Google Scholar
85. http://www.aiche.org/dippr/projects/801.Suche in Google Scholar
86. Eissen, M. Bewertung der Umweltverträglichkeit organisch-chemischer Synthesen; BIS-Verlag: Oldenburg, 2001.Suche in Google Scholar
87. Eissen, M.; Metzger, J. O. Chem. Eur. J. 2002, 8, 3580. https://doi.org/10.1002/1521-3765(20020816)8:16<3580::AID-CHEM3580>3.0.CO;2-J.10.1002/1521-3765(20020816)8:16<3580::AID-CHEM3580>3.0.CO;2-JSuche in Google Scholar
88. Toniolo, S.; Aricò, F.; Tundo, P. ACS Sustainable Chem. Eng. 2014, 2, 1056. https://doi.org/10.1021/sc500070t.Suche in Google Scholar
89. Eissen, M. Chem. Educ. Res. Pract. 2012, 13, 103. https://doi.org/10.1039/C2RP90002E.Suche in Google Scholar
90. www.metzger.chemie.uni-oldenburg.de/eatos/english.htm (registration required).Suche in Google Scholar
91. https://ecoscale.cheminfo.org/.Suche in Google Scholar
92. Van Aken, K.; Strekowski, L.; Patiny, L. Beilstein J. Org. Chem. 2006, 2, 3. https://doi.org/10.1186/1860-5397-2-3.Suche in Google Scholar
93. Trapasso, G.; Mazzi, G.; Chícharo, B.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Org. Process Res. Dev. 2022, 26, 2830. https://doi.org/10.1021/acs.oprd.2c00196.Suche in Google Scholar
94. A Guide to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS); United Nations: New York, 2015; p 90.Suche in Google Scholar
95. Globally Harmonized System of Classification and Labeling of Chemicals (GHS), “The Purple Book”; United Nations: New York.Suche in Google Scholar
96. Globally Harmonized System of Classification and Labeling of Chemicals (GHS), United Nations: New York, 4th ed., 2011, ST/SG/AC.10/30/Rev.4; p. 568.Suche in Google Scholar
97. https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev04/English/ST-SG-AC10-30-Rev4e.pdf.Suche in Google Scholar
98. https://en.wikipedia.org/wiki/Globally_Harmonized_System_of_Classification_and_Labelling_of_Chemicals.Suche in Google Scholar
99. Ribeiro, M. G. T. C.; Costa, D. A.; Machado, A. A. S. C. Green Chem. Lett. Rev. 2010, 3, 149. https://doi.org/10.1080/17518251003623376.Suche in Google Scholar
100. https://chemicalsafety.com/sds-search/.Suche in Google Scholar
101. https://en.wikipedia.org/wiki/Safety_data_sheet.Suche in Google Scholar
102. Mackay, D.; Shiu, W. Y.; Ma, K. C.; Lee, S. C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Vol. 1−4; CRC Press: Boca Raton, FL, 2006.10.1201/9781420044393Suche in Google Scholar
103. Mackay, D.; Arnot, J. A.; Webster, E.; Reid, L. In Ecotoxicology Modeling, Emerging Topics in Ecotoxicology: Principles, Approaches, and Perspectives; Devillers, J., Ed.; Springer Science: New York, 2009.Suche in Google Scholar
104. Mackay, D.; Arnot, J. A. J. Chem. Eng. Data 2011, 56, 1348. https://doi.org/10.1021/je101158y.Suche in Google Scholar
105. Mackay, D. Environ. Sci. Technol. 1979, 13, 1218. https://doi.org/10.1021/es60158a003.Suche in Google Scholar
106. Mackay, D.; Paterson, S. Environ. Sci. Technol. 1981, 15, 1006. https://doi.org/10.1021/es00091a001.Suche in Google Scholar PubMed
107. Mackay, D.; Paterson, S. Environ. Sci. Technol. 1982, 16, 654A. https://doi.org/10.1021/es00106a001.Suche in Google Scholar
108. Guinée, J. B., Ed.;Handbook on Life Cycle Assessment; Kluwer Academic Publishers: Dordrecht, 2002.Suche in Google Scholar
109. Mercer, S. M.; Andraos, J.; Jessop, P. G. J. Chem. Educ. 2012, 89, 215. https://doi.org/10.1021/ed200249v.Suche in Google Scholar
110. http://law.resource.org/pub/us/cfr/ibr/004/nfpa.704.2007.pdf.Suche in Google Scholar
111. National Institute for Occupational Safety and Health Staff. NIOSH Pocket Guide to Chemical Hazards; National Institute for Occupational Safety and Health; Centers for Disease Control and Prevention: Atlanta, GA; September Publication No. 2005-149, 2007. http://www.cdc.gov/niosh.Suche in Google Scholar
112. https://en.wikipedia.org/w/index.php?title=Registration,_Evaluation,_Authorisation_and_Restriction_of_Chemicals&oldid=776015218, https://echa.europa.eu/regulations/reach.Suche in Google Scholar
113. https://en.wikipedia.org/w/index.php?title=Registry_of_Toxic_Effects_of_Chemical_Substances&oldid=739902659.Suche in Google Scholar
114. https://www.acsgcipr.org/tools-for-innovation-in-chemistry/solvent-tool/.Suche in Google Scholar
115. https://learning.acsgcipr.org/guides-and-metrics/solvent-selection-guides/the-chem21-solvent-selection-guide/.Suche in Google Scholar
116. Diorazio, L. J.; Hose, D. R. J.; Adlington, N. K. Org. Process Res. Dev. 2016, 20, 760; https://doi.org/10.1021/acs.oprd.6b00015.Suche in Google Scholar
117. http://www.hc-sc.gc.ca/ewh-semt/occup-travail/whmis-simdut/ghs-sgh/index-eng.php.Suche in Google Scholar
118. http://whmis.org/.Suche in Google Scholar
119. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/occupational-health-safety/workplace-hazardous-materials-information-system.html.Suche in Google Scholar
120. https://en.wikipedia.org/wiki/Workplace_Hazardous_Materials_Information_System.Suche in Google Scholar
© 2025 IUPAC & De Gruyter