Abstract
The study focuses on the fabrication of multifunctional food packaging membranes consisting of Chitosan (CS) and Pectin (PC) as the polymer blend reinforced with TiO2 nanoparticles (NPs) integrated with green tea extract (GTE). For this purpose, four films (GTE 1–GTE 4) were created by combining GTE, which were extracted using different conditions. Results indicated that the physicochemical and functional properties of CS/PC blended membranes were improved by adding TiO2 NPs and GTE. Scanning Electron Microscopic (SEM) images showed reduced surface roughness and minimized particle agglomeration in the presence of GTE compared to the CS/PC/TiO2 film. The incorporation of TiO2 NPs and GTE has notably enhanced the thermal and mechanical properties of the films. Furthermore, films integrated with GTE and TiO2 NPs demonstrated enhanced water and oil barrier properties, accompanied by a reduction in moisture content, water absorption, and surface hydrophilicity upon incorporating GTE. In addition, the combined incorporation of TiO2 and GTE significantly reduced light transmission in the visible region. The GTE 4 film exhibited the highest antioxidant activity among all tested films. The antibacterial activity was evaluated using the disc diffusion method against Gram-positive (Bacillus sp.) and Gram-negative (Escherichia coli) bacteria. The GTE 4 film, demonstrated effectiveness against both types of bacteria. Additionally, pH-dependent color changes were observed in GTE 4, indicating its potential applications as a pH-sensing food packaging material. GTE 4 was also employed for packaging red grapes to extend their shelf life, and the results highlighted the film’s potential for active packaging applications, highlighting its enhanced functional properties.
Acknowledgments
The authors gratefully acknowledge the support given by the academic and technical staff of the Department of Chemistry, Faculty of Science, University of Colombo.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Perera, K. Y.; Jaiswal, S.; Jaiswal, A. K. A Review on Nanomaterials and Nanohybrids Based Bio-Nanocomposites for Food Packaging. Food Chem. 2022, 376, 1–64. https://doi.org/10.1016/j.foodchem.2021.131912.Suche in Google Scholar PubMed
2. Sid, S.; Mor, R. S.; Kishore, A.; Sharanagat, V. S. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: a Review. Trends Food Sci. Technol. 2021, 115 (June), 87–104. https://doi.org/10.1016/j.tifs.2021.06.026.Suche in Google Scholar
3. Zhang, X.; Liu, Y.; Yong, H.; Qin, Y.; Liu, J.; Liu, J. Development of Multifunctional Food Packaging Films Based on Chitosan, TiO2 Nanoparticles and Anthocyanin-Rich Black Plum Peel Extract. Food Hydrocoll. 2019, 94, 80–92. https://doi.org/10.1016/j.foodhyd.2019.03.009.Suche in Google Scholar
4. Zhang, X.; Xiao, G.; Wang, Y.; Zhao, Y.; Su, H.; Tan, T. Preparation of Chitosan-TiO2 Composite Film with Efficient Antimicrobial Activities Under Visible Light for Food Packaging Applications. Carbohydr. Polym. 2017, 169, 101–107. https://doi.org/10.1016/j.carbpol.2017.03.073.Suche in Google Scholar PubMed
5. Noshirvani, N.; Ghanbarzadeh, B.; Rezaei Mokarram, R.; Hashemi, M. Novel Active Packaging Based on Carboxymethyl Cellulose-Chitosan-ZnO NPs Nanocomposite for Increasing the Shelf Life of Bread. Food Packag. Shelf Life 2017, 11, 106–114. https://doi.org/10.1016/j.fpsl.2017.01.010.Suche in Google Scholar
6. Yousefi, A. R.; Savadkoohi, B.; Zahedi, Y.; Hatami, M.; Ako, K. Fabrication and Characterization of Hybrid Sodium Montmorillonite/TiO2 Reinforced Cross-Linked Wheat Starch-Based Nanocomposites. Int. J. Biol. Macromol. 2019, 131, 253–263. https://doi.org/10.1016/j.ijbiomac.2019.03.083.Suche in Google Scholar PubMed
7. Mohammed, M. H.; Williams, P. A.; Tverezovskaya, O. Extraction of Chitin from Prawn Shells and Conversion to Low Molecular Mass Chitosan. Food Hydrocoll. 2013, 31 (2), 166–171. https://doi.org/10.1016/j.foodhyd.2012.10.021.Suche in Google Scholar
8. Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66 (2), 395–413. https://doi.org/10.1021/acs.jafc.7b04528.Suche in Google Scholar PubMed
9. Priyadarshi, R.; Rhim, J. W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. https://doi.org/10.1016/j.ifset.2020.102346.Suche in Google Scholar
10. Acevedo-Fani, A.; Salvia-Trujillo, L.; Soliva-Fortuny, R.; Martín-Belloso, O. Modulating Biopolymer Electrical Charge to Optimize the Assembly of Edible Multilayer Nanofilms by the Layer-by-Layer Technique. Biomacromolecules 2015, 16 (9), 2895–2903. https://doi.org/10.1021/acs.biomac.5b00821.Suche in Google Scholar PubMed
11. Wang, K.; Zhao, L.; He, B. Chitosan/Montmorillonite Coatings for the Fabrication of Food-Safe Greaseproof Paper. Polymers (Basel) 2021, 13 (10). https://doi.org/10.3390/polym13101607.Suche in Google Scholar PubMed PubMed Central
12. Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M. C. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials (Basel) 2020, 13 (3). https://doi.org/10.3390/ma13030673.Suche in Google Scholar PubMed PubMed Central
13. Sun, X.; Cameron, R. G.; Bai, J. Effect of Spray-Drying Temperature on Physicochemical, Antioxidant and Antimicrobial Properties of Pectin/Sodium Alginate Microencapsulated Carvacrol. Food Hydrocoll. 2020, 100 (August 2019), 105420. https://doi.org/10.1016/j.foodhyd.2019.105420.Suche in Google Scholar
14. Machado, B. R.; Facchi, S. P.; de Oliveira, A. C.; Nunes, C. S.; Souza, P. R.; Vilsinski, B. H.; Popat, K. C.; Kipper, M. J.; Muniz, E. C.; Martins, A. F. Bactericidal Pectin/Chitosan/Glycerol Films for Food Pack Coatings: a Critical Viewpoint. Int. J. Mol. Sci. 2020, 21 (22), 1–19. https://doi.org/10.3390/ijms21228663.Suche in Google Scholar PubMed PubMed Central
15. Tripathi, S.; Mehrotra, G. K.; Dutta, P. K. Preparation and Physicochemical Evaluation of Chitosan/Poly(Vinyl Alcohol)/Pectin Ternary Film for Food-Packaging Applications. Carbohydr. Polym. 2010, 79 (3), 711–716. https://doi.org/10.1016/j.carbpol.2009.09.029.Suche in Google Scholar
16. Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y. S. Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. https://doi.org/10.1016/j.ijbiomac.2018.01.124.Suche in Google Scholar PubMed
17. Alizadeh-Sani, M.; Mohammadian, E.; McClements, D. J. Eco-Friendly Active Packaging Consisting of Nanostructured Biopolymer Matrix Reinforced with TiO2 and Essential Oil: Application for Preservation of Refrigerated Meat. Food Chem. 2020, 322 (August 2019), 126782. https://doi.org/10.1016/j.foodchem.2020.126782.Suche in Google Scholar PubMed
18. Qian, T.; Su, H.; Tan, T. The Bactericidal and Mildew-Proof Activity of a TiO2-Chitosan Composite. J. Photochem. Photobiol. A Chem. 2011, 218 (1), 130–136. https://doi.org/10.1016/j.jphotochem.2010.12.012.Suche in Google Scholar
19. Mangmee, K.; Homthawornchoo, W. Antioxidant Activity and Physicochemical Properties of Rice starch-chitosan-based Films Containing Green Tea Extract. Food Appl. Biosci. J. 2016, 4 (3), 126–137.Suche in Google Scholar
20. Homthawornchoo, W.; Han, J.; Kaewprachu, P.; Romruen, O.; Rawdkuen, S. Green Tea Extract Enrichment: Mechanical and Physicochemical Properties Improvement of Rice Starch-Pectin Composite Film. Polymers (Basel) 2022, 14 (13), 1–13. https://doi.org/10.3390/polym14132696.Suche in Google Scholar PubMed PubMed Central
21. Giménez, B.; López de Lacey, A.; Pérez-Santín, E.; López-Caballero, M. E.; Montero, P. Release of Active Compounds from Agar and Agar-Gelatin Films with Green Tea Extract. Food Hydrocoll. 2013, 30 (1), 264–271. https://doi.org/10.1016/j.foodhyd.2012.05.014.Suche in Google Scholar
22. Lan, W.; Wang, S.; Zhang, Z.; Liang, X.; Liu, X.; Zhang, J. Development of Red Apple Pomace Extract/Chitosan-Based Films Reinforced by TiO2 Nanoparticles as a Multifunctional Packaging Material. Int. J. Biol. Macromol. 2021, 168 (December 2020), 105–115. https://doi.org/10.1016/j.ijbiomac.2020.12.051.Suche in Google Scholar PubMed
23. Yavari Maroufi, L.; Ghorbani, M.; Tabibiazar, M. A. Gelatin-Based Film Reinforced by Covalent Interaction with Oxidized Guar Gum Containing Green Tea Extract as an Active Food Packaging System. Food Bioprocess Technol. 2020, 13 (9), 1633–1644. https://doi.org/10.1007/s11947-020-02509-7.Suche in Google Scholar
24. Wen, H.; Hsu, Y. I.; Asoh, T. A.; Uyama, H. Antioxidant Activity and Physical Properties of PH-Sensitive Biocomposite Using Poly(Vinyl Alcohol) Incorporated with Green Tea Extract. Polym. Degrad. Stab. 2020, 178, 109215. https://doi.org/10.1016/j.polymdegradstab.2020.109215.Suche in Google Scholar
25. Vejdan, A.; Ojagh, S. M.; Adeli, A.; Abdollahi, M. Effect of TiO2 Nanoparticles on the Physico-Mechanical and Ultraviolet Light Barrier Properties of Fish Gelatin/Agar Bilayer Film. LWT - Food Sci. Technol. 2016, 71, 88–95. https://doi.org/10.1016/j.lwt.2016.03.011.Suche in Google Scholar
26. Arfat, Y. A.; Ejaz, M.; Jacob, H.; Ahmed, J. Deciphering the Potential of Guar Gum/Ag-Cu Nanocomposite Films as an Active Food Packaging Material. Carbohydr. Polym. 2017, 157, 65–71. https://doi.org/10.1016/j.carbpol.2016.09.069.Suche in Google Scholar PubMed
27. Lan, W.; He, L.; Liu, Y. Preparation and Properties of Sodium Carboxymethyl Cellulose/Sodium Alginate/Chitosan Composite Film. Coatings 2018, 8 (8). https://doi.org/10.3390/coatings8080291.Suche in Google Scholar
28. Huang, S.; Xiong, Y.; Zou, Y.; Dong, Q.; Ding, F.; Liu, X.; Li, H. A Novel Colorimetric Indicator Based on Agar Incorporated with Arnebia Euchroma Root Extracts for Monitoring Fish Freshness. Food Hydrocoll. 2019, 90, 198–205. https://doi.org/10.1016/j.foodhyd.2018.12.009.Suche in Google Scholar
29. Fathi Achachlouei, B.; Zahedi, Y. Fabrication and Characterization of CMC-Based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials. Carbohydr. Polym. 2018, 199, 415–425. https://doi.org/10.1016/j.carbpol.2018.07.031.Suche in Google Scholar PubMed
30. Romero-Bastida, C. A.; Tapia-Blácido, D. R.; Méndez-Montealvo, G.; Bello-Pérez, L. A.; Velázquez, G.; Alvarez-Ramirez, J. Effect of Amylose Content and Nanoclay Incorporation Order in Physicochemical Properties of Starch/Montmorillonite Composites. Carbohydr. Polym. 2016, 152, 351–360. https://doi.org/10.1016/j.carbpol.2016.07.009.Suche in Google Scholar PubMed
31. Liu, Z.; Du, M.; Liu, H.; Zhang, K.; Xu, X.; Liu, K.; Tu, J.; Liu, Q. Chitosan Films Incorporating Litchi Peel Extract and Titanium Dioxide Nanoparticles and Their Application as Coatings on Watercored Apples. Prog. Org. Coatings 2021, 151 (December 2020), 106103. https://doi.org/10.1016/j.porgcoat.2020.106103.Suche in Google Scholar
32. Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and Characterization of Antioxidant and PH-Sensitive Films Based on Chitosan and Black Soybean Seed Coat Extract. Food Hydrocoll. 2019, 89 (October 2018), 56–66. https://doi.org/10.1016/j.foodhyd.2018.10.019.Suche in Google Scholar
33. Kavitha, K.; Sutha, S.; Prabhu, M.; Rajendran, V.; Jayakumar, T. In Situ Synthesized Novel Biocompatible Titania-Chitosan Nanocomposites with High Surface Area and Antibacterial Activity. Carbohydr. Polym. 2013, 93 (2), 731–739. https://doi.org/10.1016/j.carbpol.2012.12.031.Suche in Google Scholar PubMed
34. Roy, S.; Zhai, L.; Kim, H. C.; Pham, D. H.; Alrobei, H.; Kim, J. Tannic-Acid-Cross-Linked and TiO2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers (Basel) 2021, 13 (2), 1–18. https://doi.org/10.3390/polym13020228.Suche in Google Scholar PubMed PubMed Central
35. Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and Characterization of Antioxidant, Antimicrobial and PH-Sensitive Films Based on Chitosan, Silver Nanoparticles and Purple Corn Extract. Food Hydrocoll. 2019, 96 (April), 102–111. https://doi.org/10.1016/j.foodhyd.2019.05.017.Suche in Google Scholar
36. Siripatrawan, U.; Kaewklin, P. Fabrication and Characterization of Chitosan-Titanium Dioxide Nanocomposite Film as Ethylene Scavenging and Antimicrobial Active Food Packaging. Food Hydrocoll. 2018, 84, 125–134. https://doi.org/10.1016/j.foodhyd.2018.04.049.Suche in Google Scholar
37. Zhang, X.; Liu, J.; Qian, C.; Kan, J.; Jin, C. Effect of Grafting Method on the Physical Property and Antioxidant Potential of Chitosan Film Functionalized with Gallic Acid. Food Hydrocoll. 2019, 89 (October 2018), 1–10. https://doi.org/10.1016/j.foodhyd.2018.10.023.Suche in Google Scholar
38. Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of Antioxidant and Intelligent PH-Sensing Packaging Films by Incorporating Purple-Fleshed Sweet Potato Extract into Chitosan Matrix. Food Hydrocoll. 2019, 90 (November 2018), 216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015.Suche in Google Scholar
39. Jbeli, A.; Ferraria, A. M.; Botelho do Rego, A. M.; Boufi, S.; Bouattour, S. Hybrid Chitosan-TiO2/ZnS Prepared Under Mild Conditions with Visible-Light Driven Photocatalytic Activity. Int. J. Biol. Macromol. 2018, 116, 1098–1104. https://doi.org/10.1016/j.ijbiomac.2018.05.141.Suche in Google Scholar PubMed
40. Siripatrawan, U.; Harte, B. R. Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocoll. 2010, 24 (8), 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003.Suche in Google Scholar
41. Taylor, P. W.; Hamilton-Miller, J. M. T.; Stapleton, P. D. Antimicrobial Properties of Green Tea Catechins. Food Sci. Technol. Bull. Funct. Foods 2005, 2 (7), 71–81. https://doi.org/10.1616/1476-2137.14184.Suche in Google Scholar PubMed PubMed Central
42. Genskowsky, E.; Puente, L. A.; Pérez-Álvarez, J. A.; Fernandez-Lopez, J.; Muñoz, L. A.; Viuda-Martos, M. Assessment of Antibacterial and Antioxidant Properties of Chitosan Edible Films Incorporated with Maqui Berry (Aristotelia chilensis). Lwt 2015, 64 (2), 1057–1062. https://doi.org/10.1016/j.lwt.2015.07.026.Suche in Google Scholar
43. Zhu, Z.; Cai, H.; Sun, D. W. Titanium Dioxide (TiO2) Photocatalysis Technology for Nonthermal Inactivation of Microorganisms in Foods. Trends Food Sci. Technol. 2018, 75 (November 2017), 23–35. https://doi.org/10.1016/j.tifs.2018.02.018.Suche in Google Scholar
44. Siripatrawan, U.; Noipha, S. Active Film from Chitosan Incorporating Green Tea Extract for Shelf Life Extension of Pork Sausages. Food Hydrocoll. 2012, 27 (1), 102–108. https://doi.org/10.1016/j.foodhyd.2011.08.011.Suche in Google Scholar
45. Priyadarshi, R.; SaurajKumar, B.; Kumar, B.; Negi, Y. S. Chitosan Film Incorporated with Citric Acid and Glycerol as an Active Packaging Material for Extension of Green Chilli Shelf Life. Carbohydr. Polym. 2018, 195, 329–338. https://doi.org/10.1016/j.carbpol.2018.04.089.Suche in Google Scholar PubMed
46. Berker, K. I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative Evaluation of Fe(III) Reducing Power-Based Antioxidant Capacity Assays in the Presence of Phenanthroline, Batho-Phenanthroline, Tripyridyltriazine (FRAP), and Ferricyanide Reagents. Talanta 2007, 72 (3), 1157–1165. https://doi.org/10.1016/j.talanta.2007.01.019.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter