Home Enhanced electrochemical properties of ZnO nanoparticles-incorporated chitosan-based electrolyte as candidates for redox mediator in dye sensitized solar cells
Article
Licensed
Unlicensed Requires Authentication

Enhanced electrochemical properties of ZnO nanoparticles-incorporated chitosan-based electrolyte as candidates for redox mediator in dye sensitized solar cells

  • Adella Vega Aulia Shafa , Annastya Adreyanti Eka Suci , Indriana Kartini and Adhi Dwi Hatmanto ORCID logo EMAIL logo
Published/Copyright: August 22, 2025

Abstract

This study investigates the application of quasi-solid-state polymer electrolytes as a candidate to replace liquid electrolytes in dye-sensitized solar cells (DSSCs) for addressing challenges such as electrolyte leakage and counter electrode corrosion. Chitosan, a biodegradable, non-toxic, odorless polymer known for its high mechanical strength, is explored for its potential in this role. To improve the electrochemical performance of chitosan-based polymer gel electrolytes, ZnO nanofillers, specifically ZnO nanorods and ZnO nanospindles synthesized via hydrothermal methods, were incorporated into the chitosan matrix, which was mixed with KI and I2 in CH3COOH. The polymer gel electrolyte was then characterized using cyclic voltammetry, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The integration of ZnO nanoparticles enhances ionic conduction by providing additional pathways. The results show that incorporating 0.25 wt% ZnO nanorods into the polymer matrix yields anodic and cathodic peak currents of 6.68 mA and −9.37 mA, with a half-wave potential of 0.383 V (vs. Ag/AgCl). In comparison, incorporating 0.5 wt% ZnO nanospindles produces anodic and cathodic peak currents of 7.72 mA and −10.3 mA, with a half-wave potential of 0.380 V (vs. Ag/AgCl).


Corresponding author: Adhi Dwi Hatmanto, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia, e-mail:
Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 October 2024 in Penang Malaysia.
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ileperuma, O. A. Gel Polymer Electrolytes for Dye Sensitised Solar Cells: a Review. Mater. Technol. 2013, 28 (1–2), 65–70. https://doi.org/10.1179/1753555712Y.0000000043.Search in Google Scholar

2. Bella, F.; Ozzello, E. D.; Sacco, A.; Bianco, S.; Bongiovanni, R. Polymer Electrolytes for Dye-Sensitized Solar Cells Prepared by Photopolymerization of PEG-Based Oligomers. Int. J. Hydrogen Energy 2014, 39 (6), 3036–3045. https://doi.org/10.1016/j.ijhydene.2013.06.110.Search in Google Scholar

3. Zhang, X.; Yang, H.; Xiong, H. M.; Li, F. Y.; Xia, Y. Y. A quasi-solid-state Dye-Sensitized Solar Cell Based on the Stable Polymer-Grafted Nanoparticle Composite Electrolyte. J. Power Sources 2006, 160 (2 SPEC. ISS.), 1451–1455. https://doi.org/10.1016/j.jpowsour.2006.03.008.Search in Google Scholar

4. Hammani, S.; Barhoum, A.; Bechelany, M. Fabrication of PMMA/ZnO Nanocomposite: Effect of High Nanoparticles Loading on the Optical and Thermal Properties. J. Mater. Sci. 2018, 53 (3), 1911–1921. https://doi.org/10.1007/s10853-017-1654-9.Search in Google Scholar

5. Singh, R.; Janakiraman, S.; Khalifa, M.; Anandhan, S.; Ghosh, S.; Venimadhav, A.; Biswas, K. A High Thermally Stable Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte for Rechargeable Mg-Ion Battery. J. Mater. Sci.: Mater. Electron. 2020, 31 (24), 22912–22925. https://doi.org/10.1007/s10854-020-04818-1.Search in Google Scholar

6. Sonigara, K. K.; Machhi, H. K.; Vaghasiya, J. V.; Gibaud, A.; Tan, S. C.; Soni, S. S. A Smart Flexible Solid State Photovoltaic Device with Interfacial Cooling Recovery Feature Through Thermoreversible Polymer Gel Electrolyte. Small 2018, 14 (36), 1800842. https://doi.org/10.1002/smll.201800842.Search in Google Scholar PubMed

7. Soni, S. S.; Fadadu, K. B.; Vekariya, R. L.; Debgupta, J.; Patel, K. D.; Gibaud, A.; Aswal, V. K. Effect of Self-Assembly on Triiodide Diffusion in Water Based Polymer Gel Electrolytes: an Application in Dye Solar Cell. J. Colloid Interface Sci. 2014, 425, 110–117. https://doi.org/10.1016/j.jcis.2014.03.047.Search in Google Scholar PubMed

8. Sonigara, K. K.; Vaghasiya, J. V.; Machhi, H. K.; Prasad, J.; Gibaud, A.; Soni, S. S. Anisotropic One-Dimensional Aqueous Polymer Gel Electrolyte for Photoelectrochemical Devices: Improvement in Hydrophobic TiO2–Dye/Electrolyte Interface. ACS Appl. Energy Mater. 2018, 1 (8), 3665–3673. https://doi.org/10.1021/acsaem.8b00444.Search in Google Scholar

9. Chawla, P.; Srivastava, A.; Tripathi, M. Performance of Chitosan Based Polymer Electrolyte for Natural Dye Sensitized Solar Cell. Environ. Prog. Sustain. Energy 2019, 38 (2), 630–634. https://doi.org/10.1002/ep.12965.Search in Google Scholar

10. Tang, Z.; Wu, J.; Liu, Q.; Zheng, M.; Tang, Q.; Lan, Z.; Lin, J. Preparation of Poly(Acrylic Acid)/Gelatin/Polyaniline Gel-Electrolyte and Its Application in quasi-solid-state Dye-Sensitized Solar Cells. J. Power Sources 2012, 203, 282–287. https://doi.org/10.1016/j.jpowsour.2011.11.039.Search in Google Scholar

11. Kumar, M.; Surolia, P. K.; Prasad, G. Cellulose-Based Quasi-Solid Electrolytes for Dye-Sensitized Solar Cell: a Mini Review. Ionics 2025, 31, 6719–6729. https://doi.org/10.1007/s11581-025-06435-6.Search in Google Scholar

12. Zong, Z.; Kimura, Y.; Takahashi, M.; Yamane, H. Characterization of Chemical and Solid State Structures of Acylated Chitosans. Polymer (Guildf) 2000, 41 (3), 899–906. https://doi.org/10.1016/S0032-3861(99)00270-0.Search in Google Scholar

13. Pullanjiot, N.; Swaminathan, S. Enhanced Electrochemical Properties of Metal Oxide Interspersed Polymer Gel Electrolyte for QSDSSC Application. Sol. Energy 2019, 186 (April), 37–45. https://doi.org/10.1016/j.solener.2019.04.086.Search in Google Scholar

14. Kim, Y. E.; Chae, Y.; Moon, J.; Lee, J. Y.; Baek, U. C.; Park, J. T. Tailored ZnO Nanostructure Based quasi-solid-state Electrolyte and Mesoporous Carbon Electrocatalyst for Solar Energy Conversion. ECS J. Solid State Sci. Technol. 2021, 10 (8), 085005. https://doi.org/10.1149/2162-8777/ac1c9b.Search in Google Scholar

15. Aziz, S. B.; Abdulwahid, R. T.; Hamsan, M. H.; Brza, M. A.; Abdullah, R. M.; Kadir, M. F.; Muzakir, S. K. Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical Stability. Molecules 2019, 24, 1–15; https://doi.org/10.3390/molecules24193508.Search in Google Scholar PubMed PubMed Central

16. Zulkifli, A. M.; Said, N. I. A. M.; Aziz, S. B.; Hisham, S.; Shah, S.; Bakar, A. A.; Abidin, Z. H. Z.; Tajuddin, H. A.; Sulaiman, L.; Brza, M. A.; Hadi, J. M.; Al-Zangana, S. Electrochemical Characteristics of Phthaloyl Chitosan Based Gel Polymer Electrolyte for Dye Sensitized Solar Cell Application. Int. J. Electrochem. Sci. 2020, 15, 7434–7447. https://doi.org/10.20964/2020.08.86.Search in Google Scholar

17. Osman, Z.; Ibrahim, Z. A.; Arof, A. K. Conductivity Enhancement due to Ion Dissociation in Plasticized Chitosan Based Polymer Electrolytes. Carbohydr. Polym. 2001, 44 (2), 167–173. https://doi.org/10.1016/S0144-8617(00)00236-8.Search in Google Scholar

18. Hidayat, A.; Solikah, S.; Shafa, A. V. A.; Hatmanto, A. D. Hypothetical Introduction of TiO2 Nanodecahedrons (TN(10)†,‡) as the Design for Quasi Solid Dye Sensitized Solar Cells Based on KI-I2/Chitosan/PAni-Chitosan/TN(10)†,‡ by the p-n Junction Theory. Electrochim. Acta 2024, 477. https://doi.org/10.1016/j.electacta.2023.143740.Search in Google Scholar

19. Solikah, S.; Hidayat, A.; Suyanta; Hatmanto, A. D. Crystalline Phase Dependence of the Electrochemical Properties of Chitosan/Polyaniline/TiO2-KI/I2 Quasi Solid Polymer Electrolyte. Mater. Sci. Eng.: B 2024, 307. https://doi.org/10.1016/j.mseb.2024.117531.Search in Google Scholar

20. Wang, Z.; Li, H.; Tang, F.; Ma, J.; Zhou, X. A. Facile Approach for the Preparation of Nano-Size Zinc Oxide in Water/Glycerol with Extremely Concentrated Zinc Sources. Nanoscale Res. Lett. 2018, 13. https://doi.org/10.1186/s11671-018-2616-0.Search in Google Scholar PubMed PubMed Central

21. Kumar, V.; Gupta, R.; Bansal, A. Hydrothermal Growth of ZnO Nanorods for Use in Dye-Sensitized Solar Cells. ACS Appl. Nano Mater. 2021, 4 (6), 6212–6222. https://doi.org/10.1021/acsanm.1c01012.Search in Google Scholar

22. Bharathi, D.; Thiruvengadam Nandagopal, J. G.; Rajamani, R.; Pandit, S.; Kumar, D.; Pant, B.; Pandey, S.; Kumar Gupta, P. Enhanced Photocatalytic Activity of St-ZnO Nanorods for Methylene Blue Dye Degradation. Mater. Lett. 2022, 311, 131637. https://doi.org/10.1016/j.matlet.2021.131637.Search in Google Scholar

23. Singh, A.; Dutta, P. K. Green Synthesis, Characterization and Biological Evaluation of Chitin Glucan Based Zinc Oxide Nanoparticles and Its Curcumin Conjugation. Int. J. Biol. Macromol. 2020, 156, 514–521. https://doi.org/10.1016/j.ijbiomac.2020.04.081.Search in Google Scholar PubMed

24. Aboorvakani, R.; Kennady Vethanathan, S. J.; Madhu, K. U. Influence of Zn Concentration on Zinc Oxide Nanoparticles and Their Anti-Corrosion Property. J. Alloys Compd. 2020, 834, 155078. https://doi.org/10.1016/j.jallcom.2020.155078.Search in Google Scholar

25. Babu Boppudi, H.; Subba Rao, Y.; Kuchi, C.; Ramesh Babu, A.; Govinda, V.; Jagadeesh, M.; Lavanya, M. Zinc Oxide Nanoparticles as an Efficient Antioxidant, Photocatalyst, and Heterogeneous Catalyst in C–P Bond Synthesis. Results Chem. 2023, 6, 101227. https://doi.org/10.1016/j.rechem.2023.101227.Search in Google Scholar

26. Nagaraju, G.; Udayabhanu, S.; Prashanth, S. A.; Shastri, M.; Yathish, K. V.; Anupama, C.; Rangappa, D. Electrochemical Heavy Metal Detection, Photocatalytic, Photoluminescence, Biodiesel Production and Antibacterial Activities of Ag–ZnO Nanomaterial. Mater. Res. Bull. 2017, 94 (May), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043.Search in Google Scholar

27. Fatoni, A.; Hariani, P. L.; Hermansyah, H.; Lesbani, A. Synthesis and Characterization of Chitosan Linked by Methylene Bridge and Schiff Base of 4,4-Diaminodiphenyl Ether-Vanillin. Indones. J. Chem. 2018, 18 (1), 92–101. https://doi.org/10.22146/ijc.25866.Search in Google Scholar

28. Ahmad Yusof, N. A.; Mat Zain, N.; Pauzi, N. Synthesis of Chitosan/Zinc Oxide Nanoparticles Stabilized by Chitosan via Microwave Heating. Bull. Chem. React. Eng. Catal. 2019, 14 (2), 450–458. https://doi.org/10.9767/bcrec.14.2.3319.450-458.Search in Google Scholar

29. Fatoni, A.; Afrizal, M. A.; Rasyad, A. A.; Hidayat, N. i. ZnO Nanoparticles and Its Interaction with Chitosan : Profile Spectra and Their Activity Against Bacterial. JKPK (Jurnal Kimia dan Pendidikan Kimia) 2021, 6 (2), 216. https://doi.org/10.20961/jkpk.v6i2.48000.Search in Google Scholar

30. Ojur Dennis, J.; Ali, M. K. M.; Ibnaouf, K. H.; Aldaghri, O.; Abdel All, N. F. M.; Adam, A. A.; Usman, F.; Hassan, Y. M.; Abdulkadir, B. A. Effect of ZnO Nanofiller on Structural and Electrochemical Performance Improvement of Solid Polymer Electrolytes Based on Polyvinyl Alcohol–Cellulose Acetate–Potassium Carbonate Composites. Molecules 2022, 27 (17). https://doi.org/10.3390/molecules27175528.Search in Google Scholar PubMed PubMed Central

31. Chowdhury, D. R.; Spiccia, L.; Amritphale, S. S.; Paul, A.; Singh, A. A Robust Iron Oxyhydroxide Water Oxidation Catalyst Operating Under near Neutral and Alkaline Conditions. J. Mater. Chem. A Mater. 2016, 4 (10), 3655–3660. https://doi.org/10.1039/c6ta00313c.Search in Google Scholar

32. Lin, F. S.; Sakthivel, M.; Fan, M. S.; Lin, J. J.; Jeng, R. J.; Ho, K. C. A Novel Multifunctional Polymer Ionic Liquid as an Additive in Iodide Electrolyte Combined with Silver Mirror Coating Counter Electrodes for quasi-solid-state Dye-Sensitized Solar Cells. J. Mater. Chem. A Mater. 2021, 9 (8), 4907–4921. https://doi.org/10.1039/d0ta10826j.Search in Google Scholar

33. Hatmanto, A. D.; Puspitaningrum, I.; Christina Tefa, Y. N.; Santosa, S. J.; Kartini, I. Toward Eco-Friendly Dye-Sensitized Solar Cells: Developing Chitosan-Based Electrolytes with Conducting Polymers and Ionic Liquids. Int. J. Renew. Energy Dev. 2025, 14 (4), 727–739. https://doi.org/10.61435/ijred.2025.61085.Search in Google Scholar

Received: 2024-11-27
Accepted: 2025-08-11
Published Online: 2025-08-22

© 2025 IUPAC & De Gruyter

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0343/html
Scroll to top button