Design and synthesis of pendant naphthalene-based aromatic polyesters: structure-property relationship, solubility, and thermal behavior
Abstract
Aromatic polyesters were synthesized from 3,5-dihydroxy-N-(4-(naphthalen-8-yloxy)phenyl)benzamide via interfacial polycondensation with varying molar ratios of isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). The diol precursor was synthesized by Yamazaki condensation and characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. The resulting polyesters were obtained in high yields (84–93 %) with inherent viscosities in the range of 0.37–0.54 dL g−1, confirming moderate chain lengths. Solubility studies revealed that all polyesters were soluble in NMP, DMF, DMAc, and DMSO, partially soluble in THF and m-cresol, and poorly soluble in chloroform and dichloromethane. Thermogravimetric analysis (TGA) indicated good thermal stability, with initial decomposition temperatures of 151–169 °C, 10 % weight-loss temperatures (T10 %) of 369–425 °C, and residual weights of 34–53 % at 800 °C. Differential scanning calorimetry (DSC) showed glass transition temperatures (Tg) ranging from 109 to 129 °C. The incorporation of bulky naphthyl pendant units and ether linkages disrupted chain packing, enhancing solubility while retaining thermal stability. These results suggest that the synthesized polyesters possess a balanced combination of solubility and thermal resistance, making them potential candidates for applications in membranes, coatings, and other processable high-performance materials.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ping, Z.; Linbo, W.; Bo-Geng, L. Polym. Degrad. Stab. 2009, 94, 1261–1266; https://doi.org/10.1016/j.polymdegradstab.2009.04.015.Search in Google Scholar
2. Mallakpour, S.; Rafiee, Z. Polym. J. 2007, 39, 1185–1192; https://doi.org/10.1295/polymj.pj2007061.Search in Google Scholar
3. Liou, G. S.; Hsiao, S. H.; Huang, H. M.; Chang, C. W.; Yen, H. J. J. Polym. Res. 2007, 14, 191–199; https://doi.org/10.1007/s10965-006-9097-z.Search in Google Scholar
4. Hsiao, S. H.; Chiang, H. W. J. Polym. Res. 2005, 12, 211–218; https://doi.org/10.1007/s10965-004-1870-2.Search in Google Scholar
5. Liou, G. S.; Hsiao, S. H.; Huang, H.; Chang, C. W. Polym. J. 2007, 39, 448–457; https://doi.org/10.1295/polymj.pj2006156.Search in Google Scholar
6. Su, J. Q. New Chem. Mater. 1994, 10, 20–23.Search in Google Scholar
7. Mikroyannidis, J. A. Polymer 2000, 41, 8193–8204; https://doi.org/10.1016/s0032-3861(00)00203-2.Search in Google Scholar
8. Liaw, D. J.; Liaw, B. Y.; Hsu, J. J.; Cheng, Y. C. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4451–4456; https://doi.org/10.1002/1099-0518(20001215)38:24<4451::aid-pola140>3.0.co;2-q.10.1002/1099-0518(20001215)38:24<4451::AID-POLA140>3.0.CO;2-QSearch in Google Scholar
9. Liaw, D. J.; Hsu, J. J.; Liaw, B. Y. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2951–2956; https://doi.org/10.1002/pola.1276.Search in Google Scholar
10. Joshi, M. D.; Saarkar, A.; Yemul, O. S.; Wadgaonkar, P. P.; Lonikar, S. V.; Maldar, N. N. J. Appl. Polym. Sci. 1997, 64, 1329–1335.10.1002/(SICI)1097-4628(19970516)64:7<1329::AID-APP12>3.0.CO;2-SSearch in Google Scholar
11. Pandurang, N. H.; Nagendra, S. B.; Mahesh, V. B. Eur. Polym. J. 2010, 46, 709–718.Search in Google Scholar
12. Seyednejad, H.; Ghassemi, A. H.; van Nostrum, C. F.; Vermonden, T.; Hennink, W. E. J. Controlled Release 2011, 152, 168–176; https://doi.org/10.1016/j.jconrel.2010.12.016.Search in Google Scholar
13. Gao, C.; Wei, M. H.; Liu, X. L.; Huang, Z. Z.; Sheng, S. R. High Perform. Polym. 2016, 29, 1185–1191; https://doi.org/10.1177/0954008316672292.Search in Google Scholar
14. Ryu, B. Y.; Emrick, T. Angew Chem. Int. Ed. Engl. 2010, 49, 9644–9647; https://doi.org/10.1002/anie.201005456.Search in Google Scholar PubMed
15. Zhai, Z.; Jiang, C.; Zhao, N.; Dong, W.; Li, P.; Sun, H.; Niu, Q. J. J. Membr. Sci. 2020, 595, 117505; https://doi.org/10.1016/j.memsci.2019.117505.Search in Google Scholar
16. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Ubale, V. P.; Maldar, N. N. Des. Monomers Polym. 2020, 23, 177–187; https://doi.org/10.1080/15685551.2020.1826705.Search in Google Scholar PubMed PubMed Central
17. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Ubale, V. P.; Bhorkade, R.; Maldar, N. N. Int. J. Polym. Anal. Charact. 2021, 26, 1–15.10.1080/1023666X.2021.1891379Search in Google Scholar
18. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Gurame, M. B.; Ubale, V. P.; Joshi, M. D.; Maldar, N. N. J. Polym. Res. 2021, 28 (9), 342; https://doi.org/10.1007/s10965-021-02705-9.Search in Google Scholar
19. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Gurame, M. B.; Ubale, V. P.; Bhorkade, R. G.; Maldar, N. N. J. Macromol. Sci., Part A: Pure Appl. Chem. 2021, 58 (10), 677–685; https://doi.org/10.1080/10601325.2021.1922084.Search in Google Scholar
20. Shen, K. Z.; Dong, B.; Wang, Y.; Lin, L.; Chen, Z. High Perform. Polym. 2016, 28, 315–321; https://doi.org/10.1177/0954008315580002.Search in Google Scholar
21. Hsiao, S. H.; Chiang, H. W. Eur. Polym. J. 2004, 40, 1691–1697; https://doi.org/10.1016/j.eurpolymj.2004.03.006.Search in Google Scholar
22. Liu, P. P.; Zeng, L. X.; Ye, G. D.; Xu, J. J. Polym. Res. 2013, 20, 279–287; https://doi.org/10.1007/s10965-013-0279-1.Search in Google Scholar
23. Zhang, B.; Wang, Z.; Wang, Z.; Li, J.; Leng, S.; Shen, C.; Jiang, Y. Polymer 2009, 50, 2025–2034; https://doi.org/10.1016/j.polymer.2009.03.016.Search in Google Scholar
24. Ma, X.; Niu, H.; Cai, W.; Wang, W. J. Polym. Res. 2016, 23, 157–166.Search in Google Scholar
25. Deokar, S. S.; Joshi, M. D.; Tamboli, A. M.; Alshehri, S.; Ghoneim, M. M.; Truong, N. T. N.; Tamboli, M. S.; Maldar, N. N. Coatings 2022, 12 (2), 181; https://doi.org/10.3390/coatings12020181.Search in Google Scholar
26. Nechifor, A. C.; Sârbu, A.; Bruma, M. Rev. Roum. Chim. 2018, 63 (7–8), 595–604.Search in Google Scholar
27. Honkhambe, P. N.; Biyani, M. V.; Bhairamadgi, N. S.; Wadgaonkar, P. P.; Salunkhe, M. M. J. Appl. Polym. Sci. 2010, 117 (5), 2545–2552; https://doi.org/10.1002/app.32162.Search in Google Scholar
28. Arza, C. R.; Zhang, B. ACS Omega 2019, 4 (12), 15012–15021; https://doi.org/10.1021/acsomega.9b01802.Search in Google Scholar PubMed PubMed Central
29. Liou, G. S.; Hsiao, S. H.; Huang, H. M.; Chang, C. W.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2007, 45 (18), 4352–4363.10.1002/pola.22182Search in Google Scholar
30. Nechifor, M.; Lupu, M.; Bruma, M. J. Serb. Chem. Soc. 2016, 81 (6), 673–685.10.2298/JSC160111026NSearch in Google Scholar
31. Liou, G. S.; Lin, S. M.; Yen, H. J. Eur. Polym. J. 2008, 44 (8), 2608–2618; https://doi.org/10.1016/j.eurpolymj.2008.05.032.Search in Google Scholar
32. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133 (27), 10646–10654; https://doi.org/10.1021/ja204166e.Search in Google Scholar PubMed
33. Zhang, G.; Xing, X. J.; Li, D. S.; Wang, X. J.; Yang, J.; Zhang, J. W.; Chen, G. Ind. Eng. Chem. Res. 2013, 52 (47), 16577–16584; https://doi.org/10.1021/ie401750e.Search in Google Scholar
34. Liu, J.; Chen, G.; Guo, J.; Mushtaq, N.; Fang, X.; Liu, Y.; Li, D. Polymer 2015, 70, 30–37; https://doi.org/10.1016/j.polymer.2015.05.058.Search in Google Scholar
35. Biswas, S.; Barman, R.; Biswas, M.; Banerjee, A.; Das, A. Polym. Chem. 2024, 15 (27), 2753–2762; https://doi.org/10.1039/d4py00274a.Search in Google Scholar
36. Aarsen, C. V.; Liguori, A.; Mattsson, R.; Sipponen, M. H.; Hakkarainen, M. Chem. Rev. 2024, 124 (13), 8473–8515; https://doi.org/10.1021/acs.chemrev.4c00032.Search in Google Scholar PubMed PubMed Central
37. De Hoe, G. X.; Sottos, N. R.; Moore, J. S. Acc. Chem. Res. 2022, 55 (12), 1760–1772.10.1021/acs.accounts.2c00134Search in Google Scholar PubMed PubMed Central
38. Busireddy, M. R.; Liang, W. F.; Pan, S. H.; Li, T.; Wang, T. X.; Chen, C. M.; Chen, W. C. ACS Appl. Mater. Interfaces 2025, 17 (12), 18931–18939.10.1021/acsami.5c00599Search in Google Scholar PubMed PubMed Central
39. Zhang, X.; Zhong, Z.; Zhuo, R. Macromolecules 2011, 44 (11), 1755–1759; https://doi.org/10.1021/ma200137a.Search in Google Scholar
© 2025 IUPAC & De Gruyter