Home Physical Sciences Design and synthesis of pendant naphthalene-based aromatic polyesters: structure-property relationship, solubility, and thermal behavior
Article
Licensed
Unlicensed Requires Authentication

Design and synthesis of pendant naphthalene-based aromatic polyesters: structure-property relationship, solubility, and thermal behavior

  • Shivaji D. Ghodke ORCID logo , Arati V. Diwate ORCID logo EMAIL logo , Pravin S. Bhale ORCID logo , Monali P. Patil ORCID logo and Noormahmad N. Maldar ORCID logo
Published/Copyright: September 15, 2025

Abstract

Aromatic polyesters were synthesized from 3,5-dihydroxy-N-(4-(naphthalen-8-yloxy)phenyl)benzamide via interfacial polycondensation with varying molar ratios of isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). The diol precursor was synthesized by Yamazaki condensation and characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. The resulting polyesters were obtained in high yields (84–93 %) with inherent viscosities in the range of 0.37–0.54 dL g−1, confirming moderate chain lengths. Solubility studies revealed that all polyesters were soluble in NMP, DMF, DMAc, and DMSO, partially soluble in THF and m-cresol, and poorly soluble in chloroform and dichloromethane. Thermogravimetric analysis (TGA) indicated good thermal stability, with initial decomposition temperatures of 151–169 °C, 10 % weight-loss temperatures (T10 %) of 369–425 °C, and residual weights of 34–53 % at 800 °C. Differential scanning calorimetry (DSC) showed glass transition temperatures (Tg) ranging from 109 to 129 °C. The incorporation of bulky naphthyl pendant units and ether linkages disrupted chain packing, enhancing solubility while retaining thermal stability. These results suggest that the synthesized polyesters possess a balanced combination of solubility and thermal resistance, making them potential candidates for applications in membranes, coatings, and other processable high-performance materials.


Corresponding author: Arati V. Diwate, Sangameshwar College Solapur, Solapur 413001, India, e-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ping, Z.; Linbo, W.; Bo-Geng, L. Polym. Degrad. Stab. 2009, 94, 1261–1266; https://doi.org/10.1016/j.polymdegradstab.2009.04.015.Search in Google Scholar

2. Mallakpour, S.; Rafiee, Z. Polym. J. 2007, 39, 1185–1192; https://doi.org/10.1295/polymj.pj2007061.Search in Google Scholar

3. Liou, G. S.; Hsiao, S. H.; Huang, H. M.; Chang, C. W.; Yen, H. J. J. Polym. Res. 2007, 14, 191–199; https://doi.org/10.1007/s10965-006-9097-z.Search in Google Scholar

4. Hsiao, S. H.; Chiang, H. W. J. Polym. Res. 2005, 12, 211–218; https://doi.org/10.1007/s10965-004-1870-2.Search in Google Scholar

5. Liou, G. S.; Hsiao, S. H.; Huang, H.; Chang, C. W. Polym. J. 2007, 39, 448–457; https://doi.org/10.1295/polymj.pj2006156.Search in Google Scholar

6. Su, J. Q. New Chem. Mater. 1994, 10, 20–23.Search in Google Scholar

7. Mikroyannidis, J. A. Polymer 2000, 41, 8193–8204; https://doi.org/10.1016/s0032-3861(00)00203-2.Search in Google Scholar

8. Liaw, D. J.; Liaw, B. Y.; Hsu, J. J.; Cheng, Y. C. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4451–4456; https://doi.org/10.1002/1099-0518(20001215)38:24<4451::aid-pola140>3.0.co;2-q.10.1002/1099-0518(20001215)38:24<4451::AID-POLA140>3.0.CO;2-QSearch in Google Scholar

9. Liaw, D. J.; Hsu, J. J.; Liaw, B. Y. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2951–2956; https://doi.org/10.1002/pola.1276.Search in Google Scholar

10. Joshi, M. D.; Saarkar, A.; Yemul, O. S.; Wadgaonkar, P. P.; Lonikar, S. V.; Maldar, N. N. J. Appl. Polym. Sci. 1997, 64, 1329–1335.10.1002/(SICI)1097-4628(19970516)64:7<1329::AID-APP12>3.0.CO;2-SSearch in Google Scholar

11. Pandurang, N. H.; Nagendra, S. B.; Mahesh, V. B. Eur. Polym. J. 2010, 46, 709–718.Search in Google Scholar

12. Seyednejad, H.; Ghassemi, A. H.; van Nostrum, C. F.; Vermonden, T.; Hennink, W. E. J. Controlled Release 2011, 152, 168–176; https://doi.org/10.1016/j.jconrel.2010.12.016.Search in Google Scholar

13. Gao, C.; Wei, M. H.; Liu, X. L.; Huang, Z. Z.; Sheng, S. R. High Perform. Polym. 2016, 29, 1185–1191; https://doi.org/10.1177/0954008316672292.Search in Google Scholar

14. Ryu, B. Y.; Emrick, T. Angew Chem. Int. Ed. Engl. 2010, 49, 9644–9647; https://doi.org/10.1002/anie.201005456.Search in Google Scholar PubMed

15. Zhai, Z.; Jiang, C.; Zhao, N.; Dong, W.; Li, P.; Sun, H.; Niu, Q. J. J. Membr. Sci. 2020, 595, 117505; https://doi.org/10.1016/j.memsci.2019.117505.Search in Google Scholar

16. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Ubale, V. P.; Maldar, N. N. Des. Monomers Polym. 2020, 23, 177–187; https://doi.org/10.1080/15685551.2020.1826705.Search in Google Scholar PubMed PubMed Central

17. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Ubale, V. P.; Bhorkade, R.; Maldar, N. N. Int. J. Polym. Anal. Charact. 2021, 26, 1–15.10.1080/1023666X.2021.1891379Search in Google Scholar

18. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Gurame, M. B.; Ubale, V. P.; Joshi, M. D.; Maldar, N. N. J. Polym. Res. 2021, 28 (9), 342; https://doi.org/10.1007/s10965-021-02705-9.Search in Google Scholar

19. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Gurame, M. B.; Ubale, V. P.; Bhorkade, R. G.; Maldar, N. N. J. Macromol. Sci., Part A: Pure Appl. Chem. 2021, 58 (10), 677–685; https://doi.org/10.1080/10601325.2021.1922084.Search in Google Scholar

20. Shen, K. Z.; Dong, B.; Wang, Y.; Lin, L.; Chen, Z. High Perform. Polym. 2016, 28, 315–321; https://doi.org/10.1177/0954008315580002.Search in Google Scholar

21. Hsiao, S. H.; Chiang, H. W. Eur. Polym. J. 2004, 40, 1691–1697; https://doi.org/10.1016/j.eurpolymj.2004.03.006.Search in Google Scholar

22. Liu, P. P.; Zeng, L. X.; Ye, G. D.; Xu, J. J. Polym. Res. 2013, 20, 279–287; https://doi.org/10.1007/s10965-013-0279-1.Search in Google Scholar

23. Zhang, B.; Wang, Z.; Wang, Z.; Li, J.; Leng, S.; Shen, C.; Jiang, Y. Polymer 2009, 50, 2025–2034; https://doi.org/10.1016/j.polymer.2009.03.016.Search in Google Scholar

24. Ma, X.; Niu, H.; Cai, W.; Wang, W. J. Polym. Res. 2016, 23, 157–166.Search in Google Scholar

25. Deokar, S. S.; Joshi, M. D.; Tamboli, A. M.; Alshehri, S.; Ghoneim, M. M.; Truong, N. T. N.; Tamboli, M. S.; Maldar, N. N. Coatings 2022, 12 (2), 181; https://doi.org/10.3390/coatings12020181.Search in Google Scholar

26. Nechifor, A. C.; Sârbu, A.; Bruma, M. Rev. Roum. Chim. 2018, 63 (7–8), 595–604.Search in Google Scholar

27. Honkhambe, P. N.; Biyani, M. V.; Bhairamadgi, N. S.; Wadgaonkar, P. P.; Salunkhe, M. M. J. Appl. Polym. Sci. 2010, 117 (5), 2545–2552; https://doi.org/10.1002/app.32162.Search in Google Scholar

28. Arza, C. R.; Zhang, B. ACS Omega 2019, 4 (12), 15012–15021; https://doi.org/10.1021/acsomega.9b01802.Search in Google Scholar PubMed PubMed Central

29. Liou, G. S.; Hsiao, S. H.; Huang, H. M.; Chang, C. W.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2007, 45 (18), 4352–4363.10.1002/pola.22182Search in Google Scholar

30. Nechifor, M.; Lupu, M.; Bruma, M. J. Serb. Chem. Soc. 2016, 81 (6), 673–685.10.2298/JSC160111026NSearch in Google Scholar

31. Liou, G. S.; Lin, S. M.; Yen, H. J. Eur. Polym. J. 2008, 44 (8), 2608–2618; https://doi.org/10.1016/j.eurpolymj.2008.05.032.Search in Google Scholar

32. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133 (27), 10646–10654; https://doi.org/10.1021/ja204166e.Search in Google Scholar PubMed

33. Zhang, G.; Xing, X. J.; Li, D. S.; Wang, X. J.; Yang, J.; Zhang, J. W.; Chen, G. Ind. Eng. Chem. Res. 2013, 52 (47), 16577–16584; https://doi.org/10.1021/ie401750e.Search in Google Scholar

34. Liu, J.; Chen, G.; Guo, J.; Mushtaq, N.; Fang, X.; Liu, Y.; Li, D. Polymer 2015, 70, 30–37; https://doi.org/10.1016/j.polymer.2015.05.058.Search in Google Scholar

35. Biswas, S.; Barman, R.; Biswas, M.; Banerjee, A.; Das, A. Polym. Chem. 2024, 15 (27), 2753–2762; https://doi.org/10.1039/d4py00274a.Search in Google Scholar

36. Aarsen, C. V.; Liguori, A.; Mattsson, R.; Sipponen, M. H.; Hakkarainen, M. Chem. Rev. 2024, 124 (13), 8473–8515; https://doi.org/10.1021/acs.chemrev.4c00032.Search in Google Scholar PubMed PubMed Central

37. De Hoe, G. X.; Sottos, N. R.; Moore, J. S. Acc. Chem. Res. 2022, 55 (12), 1760–1772.10.1021/acs.accounts.2c00134Search in Google Scholar PubMed PubMed Central

38. Busireddy, M. R.; Liang, W. F.; Pan, S. H.; Li, T.; Wang, T. X.; Chen, C. M.; Chen, W. C. ACS Appl. Mater. Interfaces 2025, 17 (12), 18931–18939.10.1021/acsami.5c00599Search in Google Scholar PubMed PubMed Central

39. Zhang, X.; Zhong, Z.; Zhuo, R. Macromolecules 2011, 44 (11), 1755–1759; https://doi.org/10.1021/ma200137a.Search in Google Scholar

Received: 2025-06-16
Accepted: 2025-08-25
Published Online: 2025-09-15

© 2025 IUPAC & De Gruyter

Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0547/html
Scroll to top button