Home Physical Sciences Water-soluble flexible organic frameworks: synthesis, characterizations and functions
Article
Licensed
Unlicensed Requires Authentication

Water-soluble flexible organic frameworks: synthesis, characterizations and functions

  • Yue-Yang Liu , Zhi-Min Lv , Shang-Bo Yu ORCID logo , Jia Tian and Zhan-Ting Li ORCID logo EMAIL logo
Published/Copyright: June 13, 2025

Abstract

Water-soluble flexible organic frameworks (FOFs) can be constructed from multi-topic cationic, anionic or neutral, hydrophilic components through the quantitative formation of dynamic hydrazone or disulfide bond. FOFs have been revealed to possess intrinsic porosity, hydrophobic interior, and controllable nano-sizes. They function well as homogeneous nano-sponges for including proteins, DNA, residual drugs, such as neuromuscular blocking agents and heparins, and endotoxin. Their nano-sizes endow the frameworks with good ability for intracellular delivery of the included proteins and DNA and for the design of self-delivering prodrugs, while efficient inclusion of residual drugs can be utilized to develop FOF antidotes for inactivating the residual drugs. This review summarizes the design, preparations, characterizations and biofunctions of this family of dynamic covalent polymers.


Corresponding author: Zhan-Ting Li, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Physical Organic Chemistry held on 18–22 Aug 2024 in Beijing, China.

Award Identifier / Grant number: 21921003

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Yue-Yang Liu, Zhi-Min Lv, Shang-Bo Yu and Jia Tian wrote the draft, prepared and adapted the figures. Zhan-Ting Li finalized the manuscript and provided the funding.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: National Natural Science Foundation of China (No. 21921003).

  7. Data availability: Not applicable.

References

1. Liu, Q.; Xiong, J.; Lin, W.; Liu, J.; Wan, Y.; Guo, C. F.; Wang, Q.; Liu, Z. Mater. Horiz. 2025, 12, 2436. https://doi.org/10.1039/D4MH01618A.Search in Google Scholar

2. Liao, X.; Wang, Z.; Tang, W.; Lin, J. Chin. J. Org. Chem. 2023, 43, 2699. https://doi.org/10.6023/cjoc202212026.Search in Google Scholar

3. Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D. G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691. https://doi.org/10.1016/j.progpolymsci.2023.101691.Search in Google Scholar

4. Hao, Q.; Tao, Y.; Ding, X.; Yang, Y.; Feng, J.; Wang, R. L.; Chen, X. M.; Chen, G. L.; Li, X.; OuYang, H.; Hu, X.; Tian, J.; Han, B. H.; Zhu, G.; Wang, W.; Zhang, F.; Tan, B.; Li, Z. T.; Wang, D.; Wan, L. J. Sci. China Chem. 2023, 66, 620. https://doi.org/10.1007/s11426-022-1475-x.Search in Google Scholar

5. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959. https://doi.org/10.1021/cr200440z.Search in Google Scholar PubMed

6. Zhu, Y.; Xu, P.; Zhang, X.; Wu, D. Chem. Soc. Rev. 2022, 51, 1377. https://doi.org/10.1039/D1CS00871D.Search in Google Scholar

7. Xu, D.; Guo, J.; Yan, F. Prog. Polym. Sci. 2018, 79, 121. https://doi.org/10.1016/j.progpolymsci.2017.11.005.Search in Google Scholar

8. Taylor, D.; Dalgarno, S. J.; Xu, Z.; Vilela, F. Chem. Soc. Rev. 2020, 49, 3981. https://doi.org/10.1039/C9CS00315K.Search in Google Scholar PubMed

9. Yu, S. B.; Lin, F.; Tian, J.; Yu, J.; Zhang, D. W.; Li, Z. T. Chem. Soc. Rev. 2022, 51, 434. https://doi.org/10.1039/D1CS00862E.Search in Google Scholar PubMed

10. Diercks, C. S.; Yaghi, O. M. Science 2017, 355, eaal1585. https://doi.org/10.1126/science.aal1585.Search in Google Scholar PubMed

11. Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. https://doi.org/10.1039/C2CS35072F.Search in Google Scholar

12. Ji, C.; Kang, C.; Patra Bidhan, C.; Zhao, D. CCS Chem. 2023, 6, 856. https://doi.org/10.31635/ccschem.023.202303415.Search in Google Scholar

13. Arora, N.; Flores, C.; Senarathna Milinda, C.; Thompson Christina, M.; Smaldone Ronald, A. CCS Chem. 2023, 6, 57. https://doi.org/10.31635/ccschem.023.202303261.Search in Google Scholar

14. Xu, Y.; Ren, G.; Zhang, D.; Sun, L.; Zhao, Y. Chin. J. Chem. 2023, 41, 3447. https://doi.org/10.1002/cjoc.202300244.Search in Google Scholar

15. Lin, G.; Mal, A.; Wang, X.; Zhou, X.; Gui, B.; Wang, C. Sci. China Chem. 2023, 66, 2977. https://doi.org/10.1007/s11426-023-1694-2.Search in Google Scholar

16. Liu, X. H.; Wang, P. L.; Wang, W.; Ding, S. Y. Sci. China Chem. 2024, 67, 3906. https://doi.org/10.1007/s11426-024-2213-2.Search in Google Scholar

17. Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Acc. Chem. Res. 2022, 55, 3752. https://doi.org/10.1021/acs.accounts.2c00686.Search in Google Scholar PubMed

18. Zhu, R.; Yu, S.; Yang, X.; Zhu, R.; Liu, H.; Niu, K.; Xing, L. Chin. Chem. Lett. 2024, 35, 109539. https://doi.org/10.1016/j.cclet.2024.109539.Search in Google Scholar

19. Zheng, Z.; Lin, Q.; Peng, S.; Zhang, Y.; Xu, S.; Zhang, H.; Wang, H. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2511-1.Search in Google Scholar

20. Li, Z. T.; Yu, S.-B.; Liu, Y.; Tian, J.; Zhang, D. W. Acc. Chem. Res. 2022, 55, 2316. https://doi.org/10.1021/acs.accounts.2c00335.Search in Google Scholar PubMed

21. Shen, M. N.; Lin, X. W.; Luo, J.; Li, W. Z.; Ye, Y. Y.; Wang, X. Q. Mol. Syst. Des. Eng. 2022, 7, 1570. https://doi.org/10.1039/D2ME00117A.Search in Google Scholar

22. Pedrini, A.; Marchetti, D.; Pinalli, R.; Massera, C. ChemPlusChem 2023, 88, e202300383. https://doi.org/10.1002/cplu.202300383.Search in Google Scholar PubMed

23. Zhang, P. Q.; Li, Q.; Wang, Z. K.; Tang, Q. X.; Liu, P. P.; Li, W. H.; Yang, G. Y.; Yang, B.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2023, 34, 107632. https://doi.org/10.1016/j.cclet.2022.06.055.Search in Google Scholar

24. Tian, Z.; Zhao, J.; Gong, G.; Bai, X.; Li, H.; Wang, J.; Wang, L.; Cai, Q.; Chen, S. Sci. Sin. Chim. 2023, 53, 2367. https://doi.org/10.1360/SSC-2023-0176.Search in Google Scholar

25. Wang, S.; Dong, H.; Gong, G.; Lin, S.; Zhao, J.; Tian, Z.; Lu, Y.; Bai, X.; Zhang, M.; Wang, L.; Zhang, K. D.; Chen, S. Mater. Chem. Front. 2024, 8, 4096. https://doi.org/10.1039/D4QM00735B.Search in Google Scholar

26. Bai, X.; Tian, Z.; Dong, H.; Xia, N.; Zhao, J.; Sun, P.; Gong, G.; Wang, J.; Wang, L.; Li, H.; Chen, S. Angew. Chem., Int. Ed. 2024, 63, e202408428. https://doi.org/10.1002/anie.202408428.Search in Google Scholar PubMed

27. Zhang, L.; Liu, Y. Y.; Zong, Y.; Lei, Z.; Yu, S. B.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T. ACS Appl. Bio Mater. 2025, 8, 792. https://doi.org/10.1021/acsabm.4c01640.Search in Google Scholar PubMed

28. Yu, S. B.; Zhou, W.; Tian, J.; Ma, D.; Zhang, D. W.; Li, Z. T. Sci. Sin. Chim. 2023, 53, 2345. https://doi.org/10.1360/SSC-2023-0134.Search in Google Scholar

29. Tian, J.; Zhou, T. Y.; Zhang, S. C.; Aloni, S.; Altoe, M. V.; Xie, S. H.; Wang, H.; Zhang, D. W.; Zhao, X.; Liu, Y.; Li, Z. T. Nat. Commun. 2014, 5, 5574. https://doi.org/10.1038/ncomms6574.Search in Google Scholar PubMed PubMed Central

30. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621. https://doi.org/10.1021/ar020254k.Search in Google Scholar PubMed

31. Lin, J. L.; Wang, Z. K.; Xu, Z. Y.; Wei, L.; Zhang, Y. C.; Wang, H.; Zhang, D. W.; Zhou, W.; Zhang, Y. B.; Liu, Y.; Li, Z. T. J. Am. Chem. Soc. 2020, 142, 3577. https://doi.org/10.1021/jacs.9b13263.Search in Google Scholar PubMed

32. Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. Angew. Chem., Int. Ed. 2013, 52, 13219. https://doi.org/10.1002/anie.201307443.Search in Google Scholar PubMed

33. Li, Q.; Sun, J. D.; Yang, B.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. Chin. Chem. Lett. 2022, 33, 1988. https://doi.org/10.1016/j.cclet.2021.10.017.Search in Google Scholar

34. Sun, J. D.; Li, Q.; Haoyang, W. W.; Zhang, D. W.; Wang, H.; Zhou, W.; Ma, D.; Hou, J. L.; Li, Z. T. Mol. Pharm. 2022, 19, 953. https://doi.org/10.1021/acs.molpharmaceut.1c00923.Search in Google Scholar PubMed

35. Zong, Y.; Xu, Y. Y.; Wu, Y.; Liu, Y.; Li, Q.; Lin, F.; Yu, S. B.; Wang, H.; Zhou, W.; Sun, X. W.; Zhang, D. W.; Li, Z. T. J. Mater. Chem. B 2022, 10, 3268. https://doi.org/10.1039/D2TB00174H.Search in Google Scholar PubMed

36. Wu, Y.; Liu, Y. Y.; Liu, H. K.; Yu, S. B.; Lin, F.; Zhou, W.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. Chem. Sci. 2022, 13, 9243. https://doi.org/10.1039/d2sc02456j.Search in Google Scholar PubMed PubMed Central

37. Xu, Z. Y.; Liu, H. K.; Wu, Y.; Zhang, Y. C.; Zhou, W.; Wang, H.; Zhang, D. W.; Ma, D.; Li, Z. T. ACS Appl. Bio Mater. 2021, 4, 591. https://doi.org/10.1021/acsabm.1c00316.Search in Google Scholar PubMed

38. Wang, Z. K.; Lin, J. L.; Zhang, Y. C.; Yang, C. W.; Zhao, Y. K.; Leng, Z. W.; Wang, H.; Zhang, D. W.; Zhu, J.; Li, Z. T. Mater. Chem. Front. 2021, 5, 869. https://doi.org/10.1039/D0QM00791A.Search in Google Scholar

39. Liu, Y. Y.; Wu, Y.; Guo; Wang, H.; Zhou, W.; Zhang, D. W.; Li, Z. T. Chem. Synth. 2024, 4, 37. https://doi.org/10.20517/cs.2023.52.Search in Google Scholar

40. Maeda, T.; Otsuka, H.; Takahara, A. Prog. Polym. Sci. 2009, 34, 581. https://doi.org/10.1016/j.progpolymsci.2009.03.001.Search in Google Scholar

41. Han, G.; Yang, W.; Ling, H.; Liu, H.; Ren, S. Macromol. Chem. Phys. 2025, 2400461. https://doi.org/10.1002/macp.202400461.Search in Google Scholar

42. Lei, Z.; Chen, H.; Huang, S.; Wayment, L. J.; Xu, Q.; Zhang, W. Chem. Rev. 2024, 124, 7829. https://doi.org/10.1021/acs.chemrev.3c00926.Search in Google Scholar PubMed

43. Xiong, W.; Lu, H. Sci. China Chem. 2023, 66, 725. https://doi.org/10.1007/s11426-022-1418-9.Search in Google Scholar

44. Apostolides, D. E.; Patrickios, C. S. Polym. Int. 2018, 67, 627. https://doi.org/10.1002/pi.5554.Search in Google Scholar

45. Rao, J.; Khan, A. Polym. Chem. 2013, 4, 2691. https://doi.org/10.1039/C3PY00200D.Search in Google Scholar

46. Kim, K.-S.; Cho, H. J.; Lee, J.; Ha, S.; Song, S. G.; Kim, S.; Yun, W. S.; Kim, S. K.; Huh, J.; Song, C. Macromolecules 2018, 51, 8278. https://doi.org/10.1021/acs.macromol.8b01909.Search in Google Scholar

47. Weng, J. Y.; Yue, M.; Li, Q.; Yang, Y.; Wang, Y. R.; Chen, Y.; Li, S. L.; Lan, Y. Q. Coord. Chem. Rev. 2025, 535, 216614. https://doi.org/10.1016/j.ccr.2025.216614.Search in Google Scholar

48. Verma, G.; Butikofer, S.; Kumar, S.; Ma, S. Top. Curr. Chem. 2020, 378, 4. https://doi.org/10.1007/s41061-019-0268-x.Search in Google Scholar PubMed

49. Yang, B.; Zhang, X.-D.; Li, J.; Tian, J.; Wu, Y.-P.; Yu, F.-X.; Wang, R.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhou, L.; Li, Z.-T. CCS Chem. 2019, 1, 156. https://doi.org/10.31635/ccschem.019.20180011.Search in Google Scholar

50. Li, X. F.; Yu, S. B.; Yang, B.; Tian, J.; Wang, H.; Zhang, D. W.; Liu, Y.; Li, Z. T. Sci. China Chem. 2018, 61, 830. https://doi.org/10.1007/s11426-018-9234-2.Search in Google Scholar

51. Badjić, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723. https://doi.org/10.1021/ar040223k.Search in Google Scholar PubMed

52. Chen, Y.; Lei, Y.; Tong, L.; Li, H. Chem. Eur. J. 2022, 28, e202102910. https://doi.org/10.1002/chem.202102910.Search in Google Scholar PubMed

53. Finnegan, T. J.; Gunawardana, V. W. L.; Badjić, J. D. Chem. Eur. J. 2021, 27, 13280. https://doi.org/10.1002/chem.202101532.Search in Google Scholar PubMed PubMed Central

54. Ma, D.; Zhang, J.; Liu, Y. Y.; Zhang, L.; Zhao, Z.; Lin, Q.; Lei, Y.; Xing, J.; Wang, H.; Tian, J.; Zhang, D. W.; Zhou, W.; Li, Z. T. Sci. China Chem. 2025. https://doi.org/10.1007/s11426-024-2519-8.Search in Google Scholar

55. Zhang, F. X.; Kirschning, C. J.; Mancinelli, R.; Xu, X. P.; Jin, Y.; Faure, E.; Mantovani, A.; Rothe, M.; Muzio, M.; Arditi, M. J. Biol. Chem. 1999, 274, 7611. https://doi.org/10.1074/jbc.274.12.7611.Search in Google Scholar PubMed

56. Nag, K.; Singh, D. R.; Shetti, A. N.; Kumar, H.; Sivashanmugam, T.; Parthasarathy, S. Anesth. Essays Res. 2013, 7, 302. https://doi.org/10.4103/0259-1162.123211.Search in Google Scholar PubMed PubMed Central

57. Hunter, J. M.; Sneyd, J. R. Br. J. Anaesth. 2024, 132, 15. https://doi.org/10.1016/j.bja.2023.11.006.Search in Google Scholar PubMed

58. Liu, H. K.; Lin, F.; Yu, S. B.; Wu, Y.; Lu, S.; Liu, Y. Y.; Qi, Q. Y.; Cao, J.; Zhou, W.; Li, X.; Wang, H.; Zhang, D. W.; Li, Z. T.; Ma, D. J. Med. Chem. 2022, 65, 16893. https://doi.org/10.1021/acs.jmedchem.2c01677.Search in Google Scholar PubMed

Received: 2025-05-01
Accepted: 2025-05-22
Published Online: 2025-06-13
Published in Print: 2026-01-23

© 2025 IUPAC & De Gruyter

Downloaded on 27.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0508/html
Scroll to top button