Startseite Naturwissenschaften Highly sensitive and eco-friendly molecular imprinting technique for determination of albumin
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Highly sensitive and eco-friendly molecular imprinting technique for determination of albumin

  • Nasori Nasori ORCID logo EMAIL logo , Vinda Zakiyatuz Zulfa , Ulya Farahdina und Rini Khamimatul Ula
Veröffentlicht/Copyright: 22. Mai 2025

Abstract

A novel sensor has been developed for albumin recognition, using a Chitosan polymer film printed on the surface of ITO/Ag electrode. The electrode was fabricated through the deposition of an Ag film onto the ITO surface. Subsequently, MIP film was synthesized through Chitosan polymerization and cross-linked using glutaraldehyde. This polymer was used because it is more environmentally friendly and biocompatible. The formation of albumin binding sites on the MIP makes this sensor selective against other molecules. Meanwhile, Cyclic Voltammetry (CV) and Electric Impedance Spectroscopy (EIS) were used to analyze the performance of the sensor against albumin presence. Under optimal conditions, the ITO/Ag/MIP sensor showed high sensitivity with a value of 57.6 μA mM−1cm−1 and 47,100 Ω mM−1 cm−1 for CV and EIS measurements. There was only a slight difference in sensitivity values, indicating that the electrode could be used in real serum. In addition, the limit of detection (LOD) was found to be very low at 7.00 × 10−19 g dl−1 in the concentration range of 10−19 to 10−1 g/dl. The influence of other molecules was also investigated, and the sensor showed high selectivity, reproducibility, and stability. Moreover, molecular simulations show that the combination of hydrophobic and covalent interactions ensures that the MIP composition has the stability necessary for high sensitivity and the flexibility required for albumin binding.


Corresponding author: Nasori Nasori, Laboratory Medical Physics and Biophysics, Department of Physics, Faculty of Sciences and Data Analytic, Sepuluh Nopember Technology Institute, Surabaya, 60111, Indonesia, e-mail:
Article note: A collection of invited papers on Smart Sensors and Diagnostics.

Award Identifier / Grant number: 1,179/PKS/ITS/2023

Award Identifier / Grant number: 6/IV/KS/05/2023

Acknowledgments

The authors gratefully acknowledge financial support Institut Teknologi Sepuluh Nopember under the project scheme of 6/IV/KS/05/2023 dan 1179/PKS/ITS/2023 from BRIN and LPDP. The authors would also like to express gratitude to Hari Suprihatin of BRIN Yogyakarta for Ag sputtering deposition and Bernard of PT Dynatech Inter-national for SEM-EDS analysis.

  1. Research ethics: Clirens Etic by BRIN with Registser Number 28042023000056

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, N.N., V.Z.Z., and U.F.; methodology, N.N. and V.Z.Z.; software, U.F.; validation, N.N. and V.Z.Z.; formal analysis, N.N. and V.Z.Z.; investigation, N.N. and V.Z.Z.; resources, V.Z.Z. and U.F.; data curation, N.N. and V.Z.Z.; writing – original draft preparation, N.N.; writing – review and editing, V.Z.Z. and U.F.; visualization, V.Z.Z. and U.F.; supervision, N.N. and R.K.U.; project administration, R.K.U.; funding acquisition, N.N. All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The author states no conflict of interest.

  6. Research funding: The authors are grateful for the financial support from the Institut Teknologi Sepuluh Nopember under the project scheme of 6/IV/KS/05/2023 dan 1179/PKS/ITS/2023 from BRIN and LPDP.

  7. Data availability: Not applicable.

References

1. Garniasih, D.; Susanah, S.; Sribudiani, Y.; Hilmanto, D. The Incidence and Mortality of Childhood Acute Lymphoblastic Leukemia in Indonesia: A Systematic Review and Meta-Analysis. PLOS ONE 2022, 17 (6), e0269706. https://doi.org/10.1371/journal.pone.0269706.Suche in Google Scholar PubMed PubMed Central

2. Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low Albumin Levels Are Associated with Mortality Risk in Hospitalized Patients. Am. J. Med. 2017, 130 (12), 1465.e11–1465.e19. https://doi.org/10.1016/j.amjmed.2017.07.020.Suche in Google Scholar PubMed

3. Greipp, P. R.; San Miguel, J.; Durie, B. G. M.; Crowley, J. J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J. A.; Avet-Loiseau, H.; Kyle, R. A.; Lahuerta, J. J.; Ludwig, H.; Morgan, G.; Powles, R.; Shimizu, K.; Shustik, C.; Sonneveld, P.; Tosi, P.; Turesson, I.; Westin, J. International Staging System for Multiple Myeloma. J. Clin. Oncol. 2005, 23 (15), 3412–3420. https://doi.org/10.1200/JCO.2005.04.242.Suche in Google Scholar PubMed

4. Murozuka, T.; Moriwaka, M.; Ito, H.; Sekiguchi, S.; Naiki, M.; Tanaka, K.; Aoyama, T.; Komuro, K. Bovine Albumin-Like Protein in Commercial Human Albumin for Clinical Use. Vox Sang 1990, 59 (1), 1–5. https://doi.org/10.1111/j.1423-0410.1990.tb02104.x.Suche in Google Scholar PubMed

5. Miyake, M. Chapter 26 – Electrochemical Functions. In Carbon Alloys; Yasuda, E.; Inagaki, M.; Kaneko, K.; Endo, M.; Oya, A.; Tanabe, Y., Eds.; Elsevier Science: Oxford, 2003; pp. 435–445.10.1016/B978-008044163-4/50026-7Suche in Google Scholar

6. Zulfa, V. Z.; Nasori, N.; Farahdina, U.; Firdhaus, M.; Aziz, I.; Suprihatin, H.; Rhomadhoni, M. N.; Rubiyanto, A. Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. Molecules 2023, 28 (2), 617. https://doi.org/10.3390/molecules28020617.Suche in Google Scholar PubMed PubMed Central

7. Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.; Porter, R.; Horgan, A. The Rational Development of Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Chem. Soc. Rev. 2011, 40 (3), 1547–1571. https://doi.org/10.1039/C0CS00049C.Suche in Google Scholar

8. Cieplak, M.; Szwabinska, K.; Sosnowska, M.; Chandra, B. K. C.; Borowicz, P.; Noworyta, K.; D’Souza, F.; Kutner, W. Selective Electrochemical Sensing of Human Serum Albumin by Semi-Covalent Molecular Imprinting. Biosens. Bioelectron. 2015, 74, 960–966. https://doi.org/10.1016/j.bios.2015.07.061.Suche in Google Scholar PubMed

9. Wei, Y.; Zeng, Q.; Hu, Q.; Wang, M.; Tao, J.; Wang, L. Self-Cleaned Electrochemical Protein Imprinting Biosensor Basing on a Thermo-Responsive Memory Hydrogel. Biosens. Bioelectron. 2018, 99, 136–141. https://doi.org/10.1016/j.bios.2017.07.049.Suche in Google Scholar PubMed

10. Schiffman, J. D.; Schauer, C. L. One-Step Electrospinning of Cross-Linked Chitosan Fibers. Biomacromolecules 2007, 8 (9), 2665–2667. https://doi.org/10.1021/bm7006983.Suche in Google Scholar PubMed

11. Mansur, H. S.; Oréfice, R. L.; Mansur, A. A. P. Characterization of Poly(vinyl alcohol)/Poly(ethylene glycol) Hydrogels and PVA-Derived Hybrids by Small-Angle X-ray Scattering and FTIR Spectroscopy. Polymer 2004, 45 (21), 7193–7202. https://doi.org/10.1016/j.polymer.2004.08.036.Suche in Google Scholar

12. Schiffman, J. D.; Schauer, C. L. Cross-Linking Chitosan Nanofibers. Biomacromolecules 2007, 8 (2), 594–601. https://doi.org/10.1021/bm060804s.Suche in Google Scholar PubMed

13. Poole, CharlesJr. Encyclopedic Dictionary of Condensed Matter Physics; Academic Press 2004, 2004.Suche in Google Scholar

14. Thamilselvi, V.; Radha, K. A Review On The Diverse Application Of Silver Nanoparticle. IOSR J. Pharm. (IOSRPHR) 2017, 07, 21–27. https://doi.org/10.9790/3013-0701012127.Suche in Google Scholar

15. Schiffman, J. D.; Schauer, C. L. One-Step Electrospinning of Cross-Linked Chitosan Fibers. Biomacromolecules 2007, 8 (9), 2665–2667; https://doi.org/10.1021/bm7006983.Suche in Google Scholar PubMed

16. Mansur, H. S.; Oréfice, R. L.; Mansur, A. A. Characterization of Poly (Vinyl Alcohol)/Poly (Ethylene Glycol) Hydrogels and PVA-Derived Hybrids by Small-Angle X-ray Scattering and FTIR Spectroscopy. Polymer 2004, 45 (21), 7193–7202; https://doi.org/10.1016/j.polymer.2004.08.036.Suche in Google Scholar

17. Schiffman, J. D.; Schauer, C. L. Cross-Linking Chitosan Nanofibers. Biomacromolecules 2007, 8 (2), 594–601; https://doi.org/10.1021/bm060804s.Suche in Google Scholar

18. Aydın, E. B.; Aydın, M.; Sezgintürk, M. K. Selective and Ultrasensitive Electrochemical Immunosensing of NSE Cancer Biomarker in Human Serum Using Epoxy-Substituted Poly(Pyrrole) Polymer Modified Disposable ITO Electrode. Sensor. Actuator. B Chem. 2020, 306, 127613. https://doi.org/10.1016/j.snb.2019.127613.Suche in Google Scholar

19. Thamilselvi, V.; Radha, K. V. A Review on the Diverse Application of Silver Nanoparticle. IOSRPHR 2017, 07 (01), 21–27. https://doi.org/10.9790/3013-0701012127.Suche in Google Scholar

20. Farahdina, U.; Amrillah, T.; Mashuri, M.; Lee, V. S.; Rubiyanto, A.; Nasori, N. Overview of Novel Nanobiosensors for Electrochemical and Optical Diagnosis of Leukemia: Challenge and Opportunity. J. Innovat. Optical Health Sci. 2024, 17 (4). https://doi.org/10.1142/S1793545824300039.Suche in Google Scholar

21. Farahdina, U.; Firdhaus, M.; Wulandari, P.; Rubiyanto, A.; Nasori, N.; Aziz, I.; Suprihatin, H.; Jadid, N.; Ula, R. K. Electrochemical Characterization of Thin Film/Nanodots Electrodes of Silver and Gold for Biosensing CCRF-CEM Leukemia Cells. Appl. Sci. Eng. Prog. 2024, 18 (1), 7529. https://doi.org/10.14416/j.asep.2024.09.003.Suche in Google Scholar

22. Zulfa, V. Z.; Farahdina, U.; Firdhaus, M.; Aziz, I.; Nasori, N.; Endarko, E.; Darsono, D.; Rubiyanto, A. FDTD Simulation of Magnetic Field Distribution in Normal and Blood Cancer for Treatment. J. Phys.: Conf. Ser. 2021, 1951 (1), 012061. https://doi.org/10.1088/1742-6596/1951/1/012061.Suche in Google Scholar

23. Nasori, N.; Farahdina, U.; Zulfa, V. Z.; Firdhaus, M.; Aziz, I.; Darsono, D.; Cao, D.; Wang, Z.; Endarko, E.; Rubiyanto, A. A. Comparison between Silver Nanosquare Arrays and Silver Thin-Films as a Blood Cancer Prognosis Monitoring Electrode Design Using Optical and Electrochemical Characterization. Nanomaterials 2021, 11 (11), 3108. https://doi.org/10.3390/nano11113108.Suche in Google Scholar PubMed PubMed Central

24. Verheyen, E.; Schillemans, J. P.; van Wijk, M.; Demeniex, M.-A.; Hennink, W. E.; van Nostrum, C. F. Challenges for the Effective Molecular Imprinting of Proteins. Biomaterials 2011, 32 (11), 3008–3020. https://doi.org/10.1016/j.biomaterials.2011.01.007.Suche in Google Scholar PubMed

25. Lai, G.; Yan, F.; Wu, J.; Leng, C.; Ju, H. Ultrasensitive Multiplexed Immunoassay with Electrochemical Stripping Analysis of Silver Nanoparticles Catalytically Deposited by Gold Nanoparticles and Enzymatic Reaction. Anal. Chem. 2011, 83 (7), 2726–2732. https://doi.org/10.1021/ac103283p.Suche in Google Scholar PubMed

26. Zhou, C.; Liu, D.; Xu, L.; Li, Q.; Song, J.; Xu, S.; Xing, R.; Song, H. A Sensitive Label–Free Amperometric Immunosensor for Alpha-Fetoprotein based on Gold Nanorods with Different Aspect Ratio. Sci. Rep. 2015, 5, 9939. https://doi.org/10.1038/srep09939.Suche in Google Scholar PubMed PubMed Central

27. Nasori, N.; Firdhaus, M.; Farahdina, U.; Ula, R. Optimizing Tumor Treating Fields for Blood Cancer Therapy: Analysis of Electric Field Distribution and Dose Density. Biophys. Physicobiol. 2024, 21, e210013. https://doi.org/10.2142/biophysico.bppb-v21.0013.Suche in Google Scholar PubMed PubMed Central

28. Sadanandan, S. An Eco-Friendly Molecular Imprinting Technique for the Selective Recognition and Controlled Release of Bovine Serum Albumin: An Eco-Friendly Molecular Imprinting Technique. J. Chem. Technol. Biotechnol. 2018, 93 (12), 3502–3511. https://doi.org/10.1002/jctb.5709.Suche in Google Scholar

29. Bank, R. P. D. RCSB PDB - 3V03: Crystal structure of Bovine Serum Albumin. https://www.rcsb.org/structure/3v03 (Accessed Oct 3, 2024).Suche in Google Scholar

30. Shinde, D.; Ahn, D.; Jadhav, V.; Lee, D.; Shrestha, N. K.; Lee, J.; Lee, H.; Mane, R.; Han, S.-H. A Coordination Chemistry Approach for Shape Controlled Synthesis of Indium Oxide Nanostructures and Their Photoelectrochemical Properties. J. Mater. Chem. A 2014, 2, 5490–5498; https://doi.org/10.1039/c3ta15407f.Suche in Google Scholar

31. Meng, Y. A Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity. Nanomaterials 2015, 5 (2), 1124–1135. https://doi.org/10.3390/nano5021124.Suche in Google Scholar PubMed PubMed Central

32. Surya, S. G.; Khatoon, S.; Ait Lahcen, A.; Nguyen, A. T. H.; Dzantiev, B. B.; Tarannum, N.; Salama, K. N. A Chitosan Gold Nanoparticles Molecularly Imprinted Polymer Based Ciprofloxacin Sensor. RSC Adv. 2020, 10 (22), 12823–12832. https://doi.org/10.1039/D0RA01838D.Suche in Google Scholar PubMed PubMed Central

33. Li, M.; Cheng, S.; Yan, H. Preparation of Crosslinked Chitosan/Poly(Vinyl Alcohol) Blend Beads with High Mechanical Strength. Green Chem. 2007, 9 (8), 894. https://doi.org/10.1039/b618045k.Suche in Google Scholar

34. Liang, R.; Ding, J.; Gao, S.; Qin, W. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem., Int. Ed. 2017, 56 (24), 6833–6837. https://doi.org/10.1002/anie.201701892.Suche in Google Scholar PubMed

35. Wang, H.; Zhao, H.; Quan, X.; Chen, S. Electrochemical Determination of Tetracycline Using Molecularly Imprinted Polymer Modified Carbon Nanotube-Gold Nanoparticles Electrode. Electroanalysis 2011, 23 (8), 1863–1869. https://doi.org/10.1002/elan.201100049.Suche in Google Scholar

36. García-Miranda Ferrari, A.; Foster, C. W.; Kelly, P. J.; Brownson, D. A. C.; Banks, C. E. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors 2018, 8 (2), 53. https://doi.org/10.3390/bios8020053.Suche in Google Scholar PubMed PubMed Central

37. Aristov, N.; Habekost, A. Cyclic Voltammetry – A Versatile Electrochemical Method Investigating Electron Transfer Processes. World J. Chem. Edu. 2015, 3 (5), 115–119. https://doi.org/10.12691/wjce-3-5-2.Suche in Google Scholar

38. Leepheng, P.; Limthin, D.; Onlaor, K.; Tunhoo, B.; Thiwawong, T.; Suramitr, S.; Phromyothin, D. Jpn. Selective Electrochemical Determination Based on Magnetic Molecularly Imprinted Polymers for Albumin Detection. J. Appl. Phys. 2022, 61 (SD), SD1009. https://doi.org/10.35848/1347-4065/ac54f2.Suche in Google Scholar

39. Duan, D.; Yang, H.; Ding, Y.; Ye, D.; Li, L.; Ma, G. Three-Dimensional Molecularly Imprinted Electrochemical Sensor Based on Au NPs@Ti-based Metal-Organic Frameworks for Ultra-Trace Detection of Bovine Serum Albumin. Electrochim. Acta 2018, 261, 160–166. https://doi.org/10.1016/j.electacta.2017.12.146.Suche in Google Scholar

40. Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. https://doi.org/10.3390/md13031133.Suche in Google Scholar PubMed PubMed Central

41. Lee, S.; Hao, L. T.; Park, J.; Oh, D. X.; Hwang, D. S. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Adv. Mater. 2023, 35 (4), 2203325. https://doi.org/10.1002/adma.202203325.Suche in Google Scholar PubMed

42. Piekarska, K.; Sikora, M.; Owczarek, M.; Jóźwik-Pruska, J.; Wiśniewska-Wrona, M. Chitin and Chitosan as Polymers of the Future–Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers (Basel) 2023, 15 (4), 793. https://doi.org/10.3390/polym15040793.Suche in Google Scholar PubMed PubMed Central

43. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C. Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. BioTechniques 2004, 37 (5), 790–802. https://doi.org/10.2144/04375RV01.Suche in Google Scholar PubMed

Received: 2025-01-23
Accepted: 2025-04-23
Published Online: 2025-05-22
Published in Print: 2025-07-28

© 2025 IUPAC & De Gruyter

Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0419/html?lang=de
Button zum nach oben scrollen