Development of chitosan/alginate/montmorillonite hydrogel microcomposite as adsorbent for paracetamol removal from waters
Abstract
Chitosan-based hydrogel microcomposite beads, integrated with alginate and montmorillonite, (CHI/ALG/MMT) were synthesized and evaluated for their capacity to adsorb paracetamol from aqueous solutions. The materials’ structural and morphological features were examined utilizing Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Differential Thermal Analysis-Thermogravimetric Analysis (DTA-TGA), and Particle Size Analysis (PSA). The effects of pH value of paracetamol solution, contact time, and initial concentration of paracetamol on the adsorption capacity of the microcomposite are investigated. The incorporation of alginate and montmorillonite significantly enhanced the adsorption performance and stability of the chitosan beads compared to those without modification. Adsorption studies demonstrated that the best removal efficiency was achieved at pH 5, with a contact time of 60 min and an initial paracetamol concentration of 80 mg L−1. Under these conditions, the highest adsorption capacity reached 36.62 mg g−1, with an adsorption efficiency of 85.60 %. Isotherm and kinetic investigations demonstrated that the adsorption mechanism followed to the Langmuir isotherm and pseudo-second-order kinetic models. These results highlight the potential of the CHI/ALG/MMT microcomposite as an effective and eco-friendly adsorbent for the treatment of pharmaceutical wastewater, particularly paracetamol.
Funding source: International Collaboration.Scheme Grant LPPM Universitas Sebelas Maret
Award Identifier / Grant number: 369 / UN27.22 /PT.01.03 / 2025
Acknowledgment
Authors thank to the Indonesian Ministry of Research and Technology Directorate of Higher Education and LPPM Universitas Sebelas Maret for funding this research by International Collaboration.Scheme Grant ( Grant number 371/ UN27.22/PT.01.03/2025 )
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Concept – B.H.; Design – S.H.; Supervision – B.H.; Resources – B.H., S.L; Materials – B.H.; Data Collection and/or Processing – S.L., B.H.; Analysis and/or Interpretation – B.H.; S.L., S.H; Literature Search – B.H., S.L., Writing – B.H.; S.L., S.H.; Critical Reviews – B.H., S.H.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
-
Research funding: Fundamental Research Grant with grant number 1076.1/UN27.22 /PT.01.03/2024.
-
Data availability: Not applicable.
References
1. Galani, A.; Alygizakis, N.; Aalizadeh, R.; Kastritis, E.; Dimopoulos, M. A.; Thomaidis, N. S. Patterns of Pharmaceuticals Use During the First Wave of COVID-19 Pandemic in Athens, Greece as Revealed by Wastewater-based Epidemiology. Sci. Total Environ. 2021, 5 (2), 79–92.10.1016/j.scitotenv.2021.149014Suche in Google Scholar PubMed PubMed Central
2. Koagouw, W.; Arifin, Z.; Olivier, G. W. J.; Ciocan, C. High Concentrations of Paracetamol in Effluent Dominated Waters of Jakarta Bay, Indonesia. Mar. Pollut. Bull. 2021, 1 (2), 1–6; https://doi.org/10.1016/j.marpolbul.2021.112558.Suche in Google Scholar PubMed
3. Chen, Q.; Qi, Y.; Jiang, Y.; Quan, W.; Luo, H.; Wu, K.; Li, S.; Ouyang, Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar. Drugs 2022, 20 (8), 536; https://doi.org/10.3390/md20080536.Suche in Google Scholar PubMed PubMed Central
4. Ma, Z. Y. Magnetic Aluminium-Based Lithium Adsorbent and Preparation Method. China. 2018.Suche in Google Scholar
5. Li, B.; Wang, J.; Gui, Q.; Yang, H. Drug-loaded Chitosan Film Prepared via Facile Solution Casting and Air-drying of Plain Water-based Chitosan Solution for Ocular Drug Delivery. Bioact. Mater. 2020, 5, 577–583.10.1016/j.bioactmat.2020.04.013Suche in Google Scholar PubMed PubMed Central
6. Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258.10.1016/j.clay.2015.12.024Suche in Google Scholar
7. Kumar, R.; Yakubu, M. K.; Anandjiwala, R. Effect of Montmorillonite Clay on Flax Fabric Reinforced Poly Lactic Acid Composites with Amphilic Additives. Compos. A Appl. Sci. Manuf. 2010, 41 (11), 1620–1627; https://doi.org/10.1016/j.compositesa.2010.07.012.Suche in Google Scholar
8. Zhang, H.; Omer, A. M.; Hu, Z.; Yang, L. Y.; Ji, C.; Ouyang, X. kun. Fabrication of Magnetic bentonite/carboxymethyl chitosan/sodium Alginate Hydrogel Beads for Cu (II)adsorption. Int. J. Biol. Macromol. 2019, 135, 490–500; https://doi.org/10.1016/j.ijbiomac.2019.05.185.Suche in Google Scholar PubMed
9. Wang, S.; Yu, L.; Wang, S.; Zhang, L.; Chen, L.; Xu, X.; Song, Z.; Liu, H.; Chen, C. Strong, Tough, Ionic Conductive, and Freezing-tolerant All-natural Hydrogel Enabled by Cellulose-bentonite Coordination Interactions. Nat. Commun. 2022, 13 (1), 3408; https://doi.org/10.1038/s41467-022-30224-8.Suche in Google Scholar PubMed PubMed Central
10. Liu, Y.; Wei, H.; Li, S.; Wang, G.; Guo, T.; Han, H. Facile Fabrication of Semi-IPN Hydrogel Adsorbent Based on Quaternary Cellulose via Amino-anhydride Click Reaction in Water. Int. J. Biol. Macromol. 2022, 622–634.Suche in Google Scholar
11. Xu, X.; Ouyang, X.; Yang, L. Y. Adsorption of Pb(II) From Aqueous Solutions Using Crosslinked Carboxylated Chitosan/carboxylated Nanocellulose Hydrogel Beads. J. Mol. Liq. 2020, 322, 114523; https://doi.org/10.1016/j.molliq.2020.114523.Suche in Google Scholar
12. Kurczewska, J. Chitosan-Montmorillonite Hydrogel Beads for Effective Dye Adsorption. J. Water Process Eng. 2022, 48, 102928; https://doi.org/10.1016/j.jwpe.2022.102928.Suche in Google Scholar
13. Yu, J.; Wang, J.; Jiang, Y. Removal of Uranium from Aqueous Solution by Alginate Beads. Nucl. Eng. Technol. 2017, 49 (3), 534–540; https://doi.org/10.1016/j.net.2016.09.004.Suche in Google Scholar
14. Etcheverry, M.; Cappa, V.; Trelles, J.; Zanini, G. Montmorillonite-Alginate Beads: Natural Mineral and Biopolymers Based Sorbent of Paraquat Herbicides. J. Environ. Chem. Eng. 2017, 5 (6), 5868–5875; https://doi.org/10.1016/j.jece.2017.11.018.Suche in Google Scholar
15. Khushbu; Jindal, R. Cyclodextrin Mediated Controlled Release of Edaravone from pH-responsive Sodium Alginate and Chitosan Based Nanocomposites. Int. J. Biol. Macromol. 2022, 202, 11–25; https://doi.org/10.1016/j.ijbiomac.2022.01.001.Suche in Google Scholar PubMed
16. Patra, T.; Gupta, M. K. Evaluation of Sodium Alginate for Encapsulation- Vitrification of Testicular Leydig Cells. Int. J. Biol. Macromol. 2020, 153, 128–137.10.1016/j.ijbiomac.2020.02.233Suche in Google Scholar PubMed
17. Shi, T.; Lu, H.; Zhu, J.; Zhou, X.; He, C.; Li, F.; Yang, G. Naturally Derived Dual Dynamic Crosslinked Multifunctional Hydrogel for Diabetic Wound Healing. Compos. Part B: Eng. 2023, 257, 110687; https://doi.org/10.1016/j.compositesb.2023.110687.Suche in Google Scholar
18. Thagira Banu, H.; Karthikeyan, P.; Meenakshi, S. Lanthanum (III) Encapsulated chitosan-montmorillonite Composite for the Adsorptive Removal of Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2018, 112, 284–293; https://doi.org/10.1016/j.ijbiomac.2018.01.138.Suche in Google Scholar PubMed
19. Goswami, M.; Das, A. M. Synthesis and Characterization of a Biodegradable Cellulose acetate-montmorillonite Composite for Effective Adsorption of Eosin Y. Carbohydr. Polym. 2019, 206, 863–872; https://doi.org/10.1016/j.carbpol.2018.11.040.Suche in Google Scholar PubMed
20. Nawang, R.; Hussein, M. Z.; Matori, K. A.; Che Abdullah, C. A.; Hashim, M. Physicochemical Properties of hydroxyapatite/montmorillonite Nanocomposite Prepared by Powder Sintering. Results Phys. 2019, 15; https://doi.org/10.1016/j.rinp.2019.102540.Suche in Google Scholar
21. Soury, R.; Jabli, M.; Latif, S.; Alenezi, K. M.; El Oudi, M.; Abdulaziz, F.; Teka, S.; El Moll, H.; Haque, A. Synthesis and Characterization of a New Meso-tetrakis (2,4,6-trimethylphenyl) Porphyrinto) Zinc(II) Supported Sodium Alginate Gel Beads for Improved Adsorption of Methylene Blue Dye. Int. J. Biol. Macromol. 2022, 202, 161–176; https://doi.org/10.1016/j.ijbiomac.2022.01.087.Suche in Google Scholar PubMed
22. Chauhan, M.; Saini, V. K.; Suthar, S. Ti-pillared Montmorillonite Clay for Adsorptive Removal of Amoxicillin, Imipramine, diclofenac-sodium, and Paracetamol from Water. J. Hazard. Mater. 2020, 399; https://doi.org/10.1016/j.jhazmat.2020.122832.Suche in Google Scholar PubMed
23. Zhao, Z.; Li, P.; Guo, Y.; Wang, W.; Fan, G.; Teng, D. Selective Enrichment vs Dynamic Recovery of Ga(III) Using Functionalized Hydrogels: a Comparative Study of Polypropylene Hydroxamic Acid and Polyacrylic Acid Hydrogels. ACS Sustain. Chem. Eng. 2025, 13 (5), 2141–2153; https://doi.org/10.1021/acssuschemeng.4c09065.Suche in Google Scholar
24. Flores-Hernández, C. G.; Cornejo-Villegas, M. A.; Moreno-Martell, A.; Real, A. D. Synthesis of a Biodegradable Polymer of Poly (Sodium Alginate/Ethyl Acrylate). Polymers 2021, 13 (4), 1–12.10.3390/polym13040504Suche in Google Scholar PubMed PubMed Central
25. Ahmad, R.; Mirza, A. Sequestration of Heavy Metal Ions by Methionine Modified Bentonite/Alginate (Meth-bent/Alg): A Bionanocomposite. Groundw. Sustain. Dev. 2015, 1 (1–2), 50–58; https://doi.org/10.1016/j.gsd.2015.11.003.Suche in Google Scholar
26. Cheira, M. F.; Kouraim, M. N.; Zidan, I. H.; Mohamed, W. S.; Hassanein, T. F. Adsorption of U(VI) from Sulfate Solution Using montmorillonite/polyamide and nano-titanium oxide/polyamide Nanocomposites. J. Environ. Chem. Eng. 2020, 8 (5); https://doi.org/10.1016/j.jece.2020.104427.Suche in Google Scholar
27. Minisy, I. M.; Salahuddin, N. A.; Ayad, M. M. Adsorption of Methylene Blue onto chitosan–montmorillonite/polyaniline Nanocomposite. Appl. Clay Sci. 2021, 203; https://doi.org/10.1016/j.clay.2021.105993.Suche in Google Scholar
28. da Silva Bruckmann, F.; Gonçalves, J. O.; Silva, L. F. O.; Oliveira, M. L. S.; Dotto, G. L.; Rhoden, C. R. B. Chitosan-based Adsorbents for Wastewater Treatment: A Comprehensive Review. Int. J. Biol. Macromol. 2025, 309, 143173.10.1016/j.ijbiomac.2025.143173Suche in Google Scholar PubMed
29. Kryuchkova, M.; Batasheva, S.; Akhatova, F.; Babaev, V.; Buzyurova, D.; Vikulina, A.; Volodkin, D.; Fakhrullin, R.; Rozhina, E. Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int. J. Mol. Sci. 2021, 22 (18), https://doi.org/10.3390/ijms22189670.Suche in Google Scholar PubMed PubMed Central
30. Tahir, I.; Millevania, J.; Wijaya, K.; Mudasir; Wahab, R. A.; Kurniawati, W. Optimization of Thiamine Chitosan Nanoemulsion Production Using Sonication Treatment. Results Eng. 2023, 17; https://doi.org/10.1016/j.rineng.2023.100919.Suche in Google Scholar
31. Natarajan, R.; Anil Kumar, M.; Vaidyanathan, V. K. Synthesis and Characterization of Rhamnolipid Based Chitosan Magnetic Nanosorbents for the Removal of Acetaminophen from Aqueous Solution. Chemosphere 2022, 288; https://doi.org/10.1016/j.chemosphere.2021.132532.Suche in Google Scholar PubMed
32. Nguyen, D. T.; Tran, H. N.; Juang, R. -S.; Dat, N. D.; Tomul, F.; Ivanets, A.; Woo, S. H.; Hosseini-Bandegharaei, A.; Nguyen, V. P.; Chao, H. -P Adsorption Process and Mechanism of Acetaminophen onto Commercial Activated Carbon. J. Environ. Chem. Eng. 2020, 8 (6), 104408.10.1016/j.jece.2020.104408Suche in Google Scholar
33. Gan, G.; Fan, S.; Li, X.; Zhang, Z.; Hao, Z. Adsorption and Membrane Separation for Removal and Recovery of Volatile Organic Compounds. J. Environ. Sci. 2023, 123, 96–115; https://doi.org/10.1016/j.jes.2022.02.006.Suche in Google Scholar PubMed
34. Almutairi, F. M. Novel algae-chitosan/alginate Beads for Efficient Basic Fuchsin Removal: Synthesis, Characterization, Adsorption Study, Mechanism, and Optimization. Int. J. Biol. Macromol. 2024, 280, 135604; https://doi.org/10.1016/j.ijbiomac.2024.135604.Suche in Google Scholar PubMed
35. Nurmala, N.; Suratman, A.; Suherman, S. Glutaraldehyde Crosslinked Alginate-Chitosan Nanoparticles as Paracetamol Adsorbent. Indones. J. Chem. 2023, 23 (6), 1542–1554; https://doi.org/10.22146/ijc.82431.Suche in Google Scholar
36. Macías-García, A.; García-Sanz-Calcedo, J.; Carrasco-Amador, J. P.; Segura-Cruz, R. Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability 2019, 11 (9); https://doi.org/10.3390/su11092672.Suche in Google Scholar
37. Heo, J.; Choi, J.; Kim, J. Y.; Jeong, H.; Choi, D.; Han, U.; Park, J. H.; Park, H. H.; Hong, J. 2D Graphene Oxide Particles Induce Unwanted Loss in Pluripotency and Trigger Early Differentiation in Human Pluripotent Stem Cells. J. Hazard. Mater. 2021, 414, 125472; https://doi.org/10.1016/j.jhazmat.2021.125472.Suche in Google Scholar PubMed
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- Review Article
- Hydrochar as sustainable redox catalyst for advanced oxidation processes-based wastewater treatment
- Research Articles
- A comparative study of Cu(II) biosorption onto dried activated sludge of different sludge ages
- Detection of hexavalent chromium in solutions using optode membrane: fabrication and methods validation
- Effect of tin filler composition on porosity in tin-polydimethylsiloxane composites
- Acid-activated natural zeolite clinoptilolite functionalized with curcumin for superior methylene blue adsorption: insights into optimization, characterization, and adsorption mechanisms
- Factorial design assisted electrochemical detection of cypermethrin using molecularly imprinted polyaniline
- Photoluminescence studies on zinc-neodymium layered double hydroxide
- TMPTA crosslinker UV-grafted BPADA-BAPP polyimide thin films: thermo-chemical stability and structural characterization
- Development of chitosan/alginate/montmorillonite hydrogel microcomposite as adsorbent for paracetamol removal from waters
- Water responsive chitosan/polyacrylamide self-healable coating for polyethersulfone membrane
- Harnessing sporopollenin-based polymer membranes: an exploratory study on ciprofloxacin removal
- Synergistic mechanisms of ethanol and butanol in gasohol blends in 4-stroke SI engines for green sustainable energy solutions: revolutionizing engine efficiency, power output and emission reduction for net-zero transportation systems
Artikel in diesem Heft
- Frontmatter
- Review Article
- Hydrochar as sustainable redox catalyst for advanced oxidation processes-based wastewater treatment
- Research Articles
- A comparative study of Cu(II) biosorption onto dried activated sludge of different sludge ages
- Detection of hexavalent chromium in solutions using optode membrane: fabrication and methods validation
- Effect of tin filler composition on porosity in tin-polydimethylsiloxane composites
- Acid-activated natural zeolite clinoptilolite functionalized with curcumin for superior methylene blue adsorption: insights into optimization, characterization, and adsorption mechanisms
- Factorial design assisted electrochemical detection of cypermethrin using molecularly imprinted polyaniline
- Photoluminescence studies on zinc-neodymium layered double hydroxide
- TMPTA crosslinker UV-grafted BPADA-BAPP polyimide thin films: thermo-chemical stability and structural characterization
- Development of chitosan/alginate/montmorillonite hydrogel microcomposite as adsorbent for paracetamol removal from waters
- Water responsive chitosan/polyacrylamide self-healable coating for polyethersulfone membrane
- Harnessing sporopollenin-based polymer membranes: an exploratory study on ciprofloxacin removal
- Synergistic mechanisms of ethanol and butanol in gasohol blends in 4-stroke SI engines for green sustainable energy solutions: revolutionizing engine efficiency, power output and emission reduction for net-zero transportation systems