Abstract
This study compared the Cu(II) biosorption performance of dried activated sludge (DAS) of different sludge ages (5, 20 and 40 days). The influence of contact time, initial concentration, biosorbent dosage, pH, and sludge age on Cu(II) biosorption onto DAS was investigated. The optimal conditions for biosorption were identified as: 3-h contact time, pH 3–5, 0.1 g DAS dosage, and 100 mg/L initial Cu(II) concentration. The Langmuir isotherm and pseudo-second-order kinetics provided excellent fits to the experimental data. The adsorption capacity decreased with increasing sludge age, with maximum monolayer adsorption capacities of 40.32, 37.04 and 24.27 mg/g for DAS-5, DAS-20 and DAS-40, respectively. Thermodynamic analysis revealed that the Cu(II) biosorption onto DAS was a spontaneous and endothermic physisorption process with an increase in randomness. The Fourier Transform Infrared Spectroscopy analysis indicated the involvement of –OH, –NH, C=O, C–N and nitro and disulfide groups in Cu(II) biosorption. These findings demonstrate the potential of DAS as a cost-effective and sustainable biosorbent for copper removal.
Funding source: Universiti Sains Malaysia
Award Identifier / Grant number: Universiti Sains Malaysia, Special (Matching) Short-Term Grant 304/PKIMIA/6315706
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Wang: Investigation, formal analysis, writing-original draft. Yaakop: Supervision, writing-review and editing. Ng: Conceptualization, supervision, funding acquisition, writing-review and editing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work is supported by a Universiti Sains Malaysia, Special (Matching) Short-Term Grant with Project Number: 304/PKIMIA/6315706.
-
Data availability: Not applicable.
References
1. Hama Aziz, K. H.; Mustafa, F. S.; Omer, K. M.; Hama, S.; Hamarawf, R. F.; Rahman, K. O. Heavy Metal Pollution in the Aquatic Environment: Efficient and Low-Cost Removal Approaches to Eliminate their Toxicity: A Review. RSC Adv. 2023, 13, 17595–17610. https://doi.org/10.1039/d3ra00723e.Search in Google Scholar PubMed PubMed Central
2. Hao, Z.; Chen, L.; Wang, C.; Zou, X.; Zheng, F.; Feng, W.; Zhang, D.; Peng, L. Heavy Metal Distribution and Bioaccumulation Ability in Marine Organisms from Coastal regions of Hainan and Zhoushan, China. Chemosphere 2019, 226, 340–350. https://doi.org/10.1016/j.chemosphere.2019.03.132.Search in Google Scholar PubMed
3. Mao, Q.; Liu, Y.; Zhao, Y. A Review on Copper Alloys with High Strength and High Electrical Conductivity. J. Alloys Compd. 2024, 990, 174456. https://doi.org/10.1016/j.jallcom.2024.174456.Search in Google Scholar
4. Avram, O. R.; Caragea, G.; Varzaru, C. A. Copper and Its Role in the Human Body – the Importance of Establishing Copper Concentrations in the Body. Rom. J. Milit. Med. 2021, 124 (2), 254–260.10.55453/rjmm.2021.124.2.20Search in Google Scholar
5. Alsabbagh, A.; Aljarrah, S.; Almahasneh, M. Lithium Enrichment Optimization from Dead Sea end Brine by Chemical Precipitation Technique. Miner. Eng. 2021, 170, 107038. https://doi.org/10.1016/j.mineng.2021.107038.Search in Google Scholar
6. Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS Removal by ion Exchange Resins: A Review. Chemosphere 2021, 272, 129777. https://doi.org/10.1016/j.chemosphere.2021.129777.Search in Google Scholar PubMed
7. Arana Juve, J. M.; Christensen, F. M. S.; Wang, Y.; Wei, Z. Electrodialysis for Metal Removal and Recovery: A Review. Chem. Eng. J. 2022, 435, 134857. https://doi.org/10.1016/j.cej.2022.134857.Search in Google Scholar
8. Li, B.; Qi, B.; Guo, Z.; Wang, D.; Jiao, T. Recent Developments in the Application of Membrane Separation Technology and its Challenges in Oil-Water Separation: A Review. Chemosphere 2023, 327, 138528. https://doi.org/10.1016/j.chemosphere.2023.138528.Search in Google Scholar PubMed
9. Zhao, Z.; An, H.; Lin, J.; Feng, M.; Murugadoss, V.; Ding, T.; Liu, H.; Shao, Q.; Mai, X.; Wang, N.; Gu, H.; Angaiah, S.; Guo, Z. Progress on the Photocatalytic Reduction Removal of Chromium Contamination. Chem. Rec. 2019, 19, 873–882. https://doi.org/10.1002/tcr.201800153.Search in Google Scholar PubMed
10. Saleh, T. A.; Mustaqeem, M.; Khaled, M. Water Treatment Technologies in Removing Heavy Metal Ions from Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617.Search in Google Scholar
11. Ren, Y.; Yu, F.; Li, X. G.; Ma, J. Recent Progress on Adsorption and Membrane Separation for Organic Contaminants on Multi-Dimensional Graphene. Mater. Today Chem. 2021, 22, 100603. https://doi.org/10.1016/j.mtchem.2021.100603.Search in Google Scholar
12. Sharma, P. Efficiency of Bacteria and Bacterial-Assisted Phytoremediation of Heavy Metals: An Update. Bioresour. Technol. 2021, 328, 124835. https://doi.org/10.1016/j.biortech.2021.124835.Search in Google Scholar PubMed
13. Saravanan, A.; Kumar, P. S.; Yaashikaa, P. R.; Karishma, S.; Jeevanantham, S.; Swetha, S. Mixed Biosorbent of Agro Waste and Bacterial Biomass for the Separation of Pb(II) Ions from Water System. Chemosphere 2021, 277, 130236. https://doi.org/10.1016/j.chemosphere.2021.130236.Search in Google Scholar PubMed
14. Zhang, C.; Laipan, M.; Zhang, L.; Yu, S.; Li, Y.; Guo, J. Capturing Effects of Filamentous Fungi Aspergillus flavus ZJ-1 on Microalgae Chlorella vulgaris WZ-1 and the Application of their Co-Integrated Fungi-Algae Pellets for Cu(II) Adsorption. J. Hazard. Mater. 2023, 442, 130105. https://doi.org/10.1016/j.jhazmat.2022.130105.Search in Google Scholar PubMed
15. Ciobanu, A. A.; Lucaci, A. R.; Bulgariu, L. Efficient Metal Ions Biosorption on Red and Green Algae Biomass: Isotherm, Kinetic and Thermodynamic Study. J. Appl. Phycol. 2024, 36, 3809–3827. https://doi.org/10.1007/s10811-024-03332-9.Search in Google Scholar
16. Bushra, R.; Mohamad, S.; Alias, Y.; Jin, Y.; Ahmad, M. Current Approaches and Methodologies to Explore the Perceptive Adsorption Mechanism of Dyes on Low-Cost Agricultural Waste: A Review. Microporous Mesoporous Mater 2021, 319, 111040. https://doi.org/10.1016/j.micromeso.2021.111040.Search in Google Scholar
17. Liu, Z.; Khan, T. A.; Islam, M. A.; Tabrez, U. A Review on the Treatment of Dyes in Printing and Dyeing Wastewater by plant Biomass Carbon. Bioresour. Technol. 2022, 354, 127168. https://doi.org/10.1016/j.biortech.2022.127168.Search in Google Scholar PubMed
18. Boakye, P.; Ohemeng-Boahen, G.; Darkwah, L.; Sokama-Neuyam, Y. A.; Appiah-Effah, E.; Oduro-Kwarteng, S.; Asamoah Osei, B.; Asilevi, P. J.; Woo, S. H. Waste Biomass and Biomaterials Adsorbents for Wastewater Treatment. Green Energy Environ. Technol. 2022, 2022, 1–25. https://doi.org/10.5772/geet.05.Search in Google Scholar
19. Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M. G.; Park, J. High efficiency Removal of Heavy Metals Using Tire-Derived Activated Carbon vs Commercial Activated Carbon: Insights into the Adsorption Mechanisms. Chemosphere 2021, 264, 128455. https://doi.org/10.1016/j.chemosphere.2020.128455.Search in Google Scholar PubMed
20. Vendruscolo, F.; da Rocha Ferreira, G. L.; Antoniosi Filho, N. R. Biosorption of Hexavalent Chromium by Microorganisms. Int. Biodeterior. Biodegrad. 2017, 119, 87–95. https://doi.org/10.1016/j.ibiod.2016.10.008.Search in Google Scholar
21. Noormohamadi, H. R.; Fat’hi, M. R.; Ghaedi, M.; Ghezelbash, G. R. Potentiality of White-Rot Fungi in Biosorption of Nickel and Cadmium: Modeling Optimization and Kinetics Study. Chemosphere 2019, 216, 124–130. https://doi.org/10.1016/j.chemosphere.2018.10.113.Search in Google Scholar PubMed
22. Ramachandran, G.; Chackaravarthi, G.; Rajivgandhi, G. N.; Quero, F.; Maruthupandy, M.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Li, W. J. Biosorption and Adsorption Isotherm of Chromium (VI) Ions in Aqueous Solution using Soil Bacteria Bacillus amyloliquefaciens. Environ. Res. 2022, 212, 113310. https://doi.org/10.1016/j.envres.2022.113310.Search in Google Scholar PubMed
23. do Nascimento, J. M.; de Oliveira, J. D.; Rizzo, A. C. L.; Leite, S. G. F. Biosorption Cu (II) by the Yeast Saccharomyces cerevisiae. Biotechnol. Rep. 2019, 21, e00315. https://doi.org/10.1016/j.btre.2019.e00315.Search in Google Scholar PubMed PubMed Central
24. Vijayaraghavan, K.; Yun, Y. S. Bacterial Biosorbents and Biosorption. Biotechnol. Adv. 2008, 26, 266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002.Search in Google Scholar PubMed
25. Guan, R.; Yuan, X.; Wu, Z.; Wang, H.; Jiang, L.; Li, Y.; Zeng, G. Functionality of Surfactants in Waste-Activated Sludge Treatment: A Review. Sci. Total Environ. 2017, 609, 1433–1442. https://doi.org/10.1016/j.scitotenv.2017.07.189.Search in Google Scholar PubMed
26. Zare, H.; Heydarzade, H.; Rahimnejad, M.; Tardast, A.; Seyfi, M.; Peyghambarzadeh, S. M. Dried Activated Sludge as an Appropriate Biosorbent for Removal of Copper (II) ions. Arab. J. Chem. 2015, 8, 858–864. https://doi.org/10.1016/j.arabjc.2012.11.019.Search in Google Scholar
27. Tang, C. J.; Chen, X.; Feng, F.; Liu, Z. G.; Song, Y. X; Wang, Y. Y.; Tang, X. Roles of Bacterial Cell and Extracellular Polymeric Substance on Adsorption of Cu(II) in Activated Sludges: A Comparative Study. J. Water Process Eng. 2021, 41, 102094. https://doi.org/10.1016/j.jwpe.2021.102094.Search in Google Scholar
28. Hammaini, A.; González, F.; Ballester, A.; Blázquez, M. L.; Muñoz, J. A. Biosorption of Heavy Metals by Activated Sludge and Their Desorption Characteristics. J. Environ. Manage. 2007, 84, 419–426. https://doi.org/10.1016/j.jenvman.2006.06.015.Search in Google Scholar PubMed
29. Hammaini, A.; González, F.; Ballester, A.; Blázquez, M. L.; Muñoz, J. A. Simultaneous Uptake of Metals by Activated Sludge. Miner. Eng. 2003, 16, 723–729. https://doi.org/10.1016/S0892-6875(03)00166-3.Search in Google Scholar
30. Hilal, N.; Ajaykumar, A. V.; Darwish, N. A. Study of Various Parameters in the Biosorption of Heavy Metals on Activated Sludge. World Appl. Sci. J. 2009, 5, 32–40.Search in Google Scholar
31. You, S. J.; Tsai, Y. P.; Huang, R. Y. Effect of Heavy Metals on Nitrification Performance in Different Activated Sludge Processes. J. Hazard. Mater. 2009, 165, 987–994. https://doi.org/10.1016/j.jhazmat.2008.10.112.Search in Google Scholar PubMed
32. Wu, Y.; Zhou, J.; Wen, Y.; Jiang, L.; Wu, Y. Biosorption of Heavy Metal ions (Cu2+, Mn2+, Zn2+, and Fe3+) from Aqueous Solutions Using Activated Sludge: Comparison of Aerobic Activated Sludge with Anaerobic Activated Sludge. Appl. Biochem. Biotechnol. 2012, 168, 2079–2093. https://doi.org/10.1007/s12010-012-9919-x.Search in Google Scholar PubMed
33. Gulnaz, O.; Saygideger, S.; Kusvuran, E. Study of Cu(II) Biosorption by Dried Activated Sludge: Effect of Physico-Chemical Environment and Kinetics Study. J. Hazard. Mater. 2005, 120, 193–200. https://doi.org/10.1016/j.jhazmat.2005.01.003.Search in Google Scholar PubMed
34. Yang, C.; Wang, J.; Lei, M.; Xie, G.; Zeng, G.; Luo, S. Biosorption of Zinc(II) from Aqueous Solution by Dried Activated Sludge. J. Environ. Sci. 2010, 22, 675–680. https://doi.org/10.1016/S1001-0742(09)60162-5.Search in Google Scholar
35. Ge, H.; Batstone, D. J.; Keller, J. Biological Phosphorus Removal from Abattoir Wastewater at Very Short Sludge Ages Mediated by Novel PAO Clade Comamonadaceae. Water Res. 2015, 69, 173–182. https://doi.org/10.1016/j.watres.2014.11.026.Search in Google Scholar PubMed
36. Yao, Q.; Zhang, H.; Wu, J.; Shao, L.; He, P. Biosorption of Cr(III) from Aqueous Solution by Freeze-Dried Activated Sludge: Equilibrium, Kinetic and Thermodynamic Studies. Front. Environ. Sci. Eng. 2010, 4, 286–294. https://doi.org/10.1007/s11783-010-0025-4.Search in Google Scholar
37. Wang, X. H.; Song, R. H.; Teng, S. X.; Gao, M. M.; Ni, J. Y.; Liu, F. F.; Wang, S. G.; Gao, B. Y. Characteristics and Mechanisms of Cu(II) Biosorption by Disintegrated Aerobic Granules. J. Hazard. Mater. 2010, 179, 431–437. https://doi.org/10.1016/j.jhazmat.2010.03.022.Search in Google Scholar PubMed
38. Roy, D.; Roy, B.; Manna, A. K. Pyrolyzed Mesoporous Activated Carbon Preparation from Natural Rubber Common Effluent Biosludge: Characterization, Isotherms, Kinetics, Thermodynamics, and ANN Modeling During Phenol Adsorption. Groundw. Sustain. Dev. 2023, 23, 101020. https://doi.org/10.1016/j.gsd.2023.101020.Search in Google Scholar
39. Ramrakhiani, L.; Ghosh, S.; Sarkar, S.; Majumdar, S. Heavy Metal Biosorption in Multi-Component System on Dried Activated Sludge: Investigation of Adsorption Mechanism by Surface Characterization. Mater. Today Proc. 2016, 3, 3538–3552. https://doi.org/10.1016/j.matpr.2016.10.036.Search in Google Scholar
40. Song, Y. X.; Lu, C. H.; Liu, P.; Chai, X. L.; Chen, X.; Min, X. B.; Tang, C. J.; Chai, L. Y. Insights into the Role of Extracellular Polymeric Substances in Zn2+ Adsorption in Different Biological Sludge Systems. Environ. Sci. Pollut. Res. 2018, 25, 36680–36692. https://doi.org/10.1007/s11356-018-3451-7.Search in Google Scholar PubMed
41. Cuppett, J. D.; Duncan, S. E.; Dietrich, A. M. Evaluation of Copper Speciation and Water Quality Factors that Affect Aqueous Copper Tasting Response. Chem. Senses 2006, 31, 689–697. https://doi.org/10.1093/chemse/bjl010.Search in Google Scholar PubMed
42. Feng, Y.; Zhou, H.; Liu, G.; Qiao, J.; Wang, J.; Lu, H.; Yang, L.; Wu, Y. Methylene Blue Adsorption Onto Swede Rape Straw (Brassica napus L.) Modified by Tartaric Acid: Equilibrium, Kinetic and Adsorption Mechanisms. Bioresour. Technol. 2012, 125, 138–144. https://doi.org/10.1016/j.biortech.2012.08.128.Search in Google Scholar PubMed
43. Alafnan, S.; Awotunde, A.; Glatz, G.; Adjei, S.; Alrumaih, I.; Gowida, A. Langmuir Adsorption Isotherm in Unconventional Resources: Applicability and Limitations. J. Pet. Sci. Eng. 2021, 207, 109172. https://doi.org/10.1016/j.petrol.2021.109172.Search in Google Scholar
44. Gouamid, M.; Ouahrani, M. R.; Bensaci, M. B. Adsorption Equilibrium, Kinetics, and Thermodynamics of Methylene Blue from Aqueous Solutions Using Date Palm Leaves. Energy Procedia 2013, 36, 898–907. https://doi.org/10.1016/j.egypro.2013.07.103.Search in Google Scholar
45. Chen, X.; Hossain, M. F.; Duan, C.; Lu, J.; Tsang, Y. F.; Islam, M. S.; Zhou, Y. Isotherm Models for Adsorption of Heavy Metals from Water: A Review. Chemosphere 2022, 307, 135545. https://doi.org/10.1016/j.chemosphere.2022.135545.Search in Google Scholar PubMed
46. Deng, S.; Ting, Y. P. Fungal Biomass with Grafted Poly(acrylic acid) for Enhancement of Cu(II) and Cd(II) Biosorption. Langmuir 2005, 21, 5940–5948. https://doi.org/10.1021/la047349a.Search in Google Scholar PubMed
47. Veit, M. T.; Tavares, C. R. G.; Gomes-da-Costa, S. M.; Guedes, T. A. Adsorption Isotherms of Copper(II) for Two Species of Dead Fungi Biomasses. Process Biochem. 2005, 40, 3303–3308. https://doi.org/10.1016/j.procbio.2005.03.029.Search in Google Scholar
48. Lu, W. B.; Shi, J. J.; Wang, C. H.; Chang, J. S. Biosorption of Lead, Copper and Cadmium by an Indigenous Isolate Enterobacter sp. J1 Possessing High Heavy-Metal Resistance. J. Hazard. Mater. 2006, 134, 80–86. https://doi.org/10.1016/j.jhazmat.2005.10.036.Search in Google Scholar PubMed
49. Almomani, F.; Bohsale, R. R. Bio-Sorption of Toxic Metals from Industrial Wastewater by Algae Strains Spirulina platensis and Chlorella vulgaris: Application of Isotherm, Kinetic Models and Process Optimization. Sci. Total Environ. 2021, 755, 142654. https://doi.org/10.1016/j.scitotenv.2020.142654.Search in Google Scholar PubMed
50. Saha, B.; Debnath, A.; Saha, B. Polypyrrole-Encapsulated Metal Oxide Nanocomposite for Adsorptive Abatement of Anionic Dye from Dye-Laden Wastewater: Cost Analysis and Scale-up Design. Mater. Today Commun. 2024, 39, 109061. https://doi.org/10.1016/j.mtcomm.2024.109061.Search in Google Scholar
51. Hu, M.; Deng, W.; Su, Y.; Wang, L.; Chen, G. Optimization of Hydrogen Sulfide Adsorption Performance by Tar-Based Porous Carbon Prepared by Template Method. Sep. Purif. Technol. 2023, 327, 124979. https://doi.org/10.1016/j.seppur.2023.124979.Search in Google Scholar
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Review Article
- Hydrochar as sustainable redox catalyst for advanced oxidation processes-based wastewater treatment
- Research Articles
- A comparative study of Cu(II) biosorption onto dried activated sludge of different sludge ages
- Detection of hexavalent chromium in solutions using optode membrane: fabrication and methods validation
- Effect of tin filler composition on porosity in tin-polydimethylsiloxane composites
- Acid-activated natural zeolite clinoptilolite functionalized with curcumin for superior methylene blue adsorption: insights into optimization, characterization, and adsorption mechanisms
- Factorial design assisted electrochemical detection of cypermethrin using molecularly imprinted polyaniline
- Photoluminescence studies on zinc-neodymium layered double hydroxide
- TMPTA crosslinker UV-grafted BPADA-BAPP polyimide thin films: thermo-chemical stability and structural characterization
- Development of chitosan/alginate/montmorillonite hydrogel microcomposite as adsorbent for paracetamol removal from waters
- Water responsive chitosan/polyacrylamide self-healable coating for polyethersulfone membrane
- Harnessing sporopollenin-based polymer membranes: an exploratory study on ciprofloxacin removal
- Synergistic mechanisms of ethanol and butanol in gasohol blends in 4-stroke SI engines for green sustainable energy solutions: revolutionizing engine efficiency, power output and emission reduction for net-zero transportation systems
Articles in the same Issue
- Frontmatter
- Review Article
- Hydrochar as sustainable redox catalyst for advanced oxidation processes-based wastewater treatment
- Research Articles
- A comparative study of Cu(II) biosorption onto dried activated sludge of different sludge ages
- Detection of hexavalent chromium in solutions using optode membrane: fabrication and methods validation
- Effect of tin filler composition on porosity in tin-polydimethylsiloxane composites
- Acid-activated natural zeolite clinoptilolite functionalized with curcumin for superior methylene blue adsorption: insights into optimization, characterization, and adsorption mechanisms
- Factorial design assisted electrochemical detection of cypermethrin using molecularly imprinted polyaniline
- Photoluminescence studies on zinc-neodymium layered double hydroxide
- TMPTA crosslinker UV-grafted BPADA-BAPP polyimide thin films: thermo-chemical stability and structural characterization
- Development of chitosan/alginate/montmorillonite hydrogel microcomposite as adsorbent for paracetamol removal from waters
- Water responsive chitosan/polyacrylamide self-healable coating for polyethersulfone membrane
- Harnessing sporopollenin-based polymer membranes: an exploratory study on ciprofloxacin removal
- Synergistic mechanisms of ethanol and butanol in gasohol blends in 4-stroke SI engines for green sustainable energy solutions: revolutionizing engine efficiency, power output and emission reduction for net-zero transportation systems