Home Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment
Article
Licensed
Unlicensed Requires Authentication

Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment

  • Oanh H. Nguyen , Huy T. A. Nguyen , Luon Tan Nguyen , Nga H. N. Do , Lam Dai Tran , Viet T. Tran , Phung K. Le and Kien A. Le EMAIL logo
Published/Copyright: March 20, 2024

Abstract

Biomass-based aerogels are of interest due to their abundant precursors, ease of functionalization, eco-friendliness, low cost, and effectiveness in dye-contaminated water treatment. Coconut pith (CP) known as a by-product after coconut processing is a sponge-like and lightweight material discarded in large volumes. For the first time, carbon micro-particles resulting from two-step treatment and pyrolysis of CP have been successfully incorporated with chitosan to produce aerogel composites by high-speed homogenization and freeze-drying. After pretreatment, holocellulose content and crystallinity index of the recovered CP pulp are respectively 75.4 and 58.6 % along with a solid recovery rate of 27.5 %. Characteristic properties of the aerogel composites are featured by their density as low as 15.23–28.17 mg/cm3, remarkably high porosity of 98.17–99.05 %, and Young’s modulus of 1.64–12.23 kPa. Synergistic effects of the porous network, electrostatic interactions between both amine groups in chitosan and carbon surface with methyl orange (MO) cause the as-fabricated aerogel composites to achieve an extremely high adsorption capacity of 454.13 mg/g and removal efficiency of 92.32 % at initial MO concentration of 500 mg/L. Therefore, the CP-derived carbon/chitosan aerogel composites synthesized from a feasible procedure exhibit their great potential in enhancing the value of coconut waste and dealing with dye-contaminated water pollution by simple and economical adsorption.


Corresponding author: Kien A. Le, Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung Street, Phu Nhuan District, Ho Chi Minh City, Vietnam, e-mail:
Article note: A collection of invited papers on the advanced materials for environmental protection. Oanh H. Nguyen and Huy T. A. Nguyen contributed equally to this work.

Funding source: Vietnam Ministry of Science & Technology (MOST)

Award Identifier / Grant number: ĐTĐL.CN-117/21

Acknowledgments

This work was funded by the Vietnam Ministry of Science & Technology (MOST) under project code ĐTĐL.CN-117/21. We also acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM and Institute for Tropical Technology and Environmental Protection for supporting this study.

  1. Research funding: This work was funded by the Vietnam Ministry of Science & Technology (MOST) under project code ĐTĐL.CN-117/21.

References

[1] A. M. Jorge, K. Athira, M. B. Alves, R. L. Gardas, J. F. Pereira. J. Water Process Eng. 55, 104125 (2023), https://doi.org/10.1016/j.jwpe.2023.104125.Search in Google Scholar

[2] B. Carney Almroth, J. Cartine, C. Jönander, M. Karlsson, J. Langlois, M. Lindström, J. Lundin, N. Melander, A. Pesqueda, I. Rahmqvist, J. Renaux, J. Roos, F. Spilsbury, J. Svalin, H. Vestlund, L. Zhao, N. Asker, G. Ašmonaitė, L. Birgersson, T. Boloori, F. Book, T. Lammel, J. Sturve. Ecotoxicol. Environ. Saf. 207, 111523 (2021), https://doi.org/10.1016/j.ecoenv.2020.111523.Search in Google Scholar PubMed

[3] H. B. Slama, A. Chenari Bouket, Z. Pourhassan, F. N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golińska, L. Belbahri. Appl. Sci. 11(14), 6255 (2021), https://doi.org/10.3390/app11146255.Search in Google Scholar

[4] K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora, C. A. Igwegbe. Curr. Res. Green Sustain. Chem. 4, 100179 (2021), https://doi.org/10.1016/j.crgsc.2021.100179.Search in Google Scholar

[5] S. Zhang, G. Liu, Y. Gao, Q. Yue, B. Gao, X. Xu, W. Kong, N. Li, W. Jiang. Sci. Total Environ. 694, 133671 (2019), https://doi.org/10.1016/j.scitotenv.2019.133671.Search in Google Scholar PubMed

[6] J. Jiang, Q. Zhang, X. Zhan, F. Chen. Chem. Eng. J. 358, 1539 (2019), https://doi.org/10.1016/j.cej.2018.10.144.Search in Google Scholar

[7] P. X. T. Nguyen, K. Ho, N. Do, C. Nguyen, H. Nguyen, K. Tran, K. A. Le, P. K. Le. Mater. Today Sustain. 19, 100175 (2022), https://doi.org/10.1016/j.mtsust.2022.100175.Search in Google Scholar

[8] P. V. Vu, T. D. Doan, G. C. Tu, N. H. N. Do, K. A. Le, P. K. Le. J. Porous Mater. 29(4), 1137 (2022), https://doi.org/10.1007/s10934-022-01238-w.Search in Google Scholar

[9] N. Vo, C. T. X. Nguyen, T. M. Le, C. D. Pham, N. H. N. Do, K. A. Le, T. P. Mai, P. T. K. Le. Chem. Eng. Trans. 97, 73 (2022).Search in Google Scholar

[10] P. Joshi, O. P. Sharma, S. K. Ganguly, M. Srivastava, O. P. Khatri. J. Colloid Interface Sci. 608, 2870 (2022), https://doi.org/10.1016/j.jcis.2021.11.016.Search in Google Scholar PubMed

[11] N. H. N. Do, B. Y. Truong, P. T. X. Nguyen, K. A. Le, H. M. Duong, P. K. Le. Sep. Purif. Technol. 283, 120200 (2022), https://doi.org/10.1016/j.seppur.2021.120200.Search in Google Scholar

[12] J. Yu, S. Tian, A. Yao, H. Hu, J. Lan, L. Yang, X. Du, S. Lin. Carbohydr. Polym. 323, 121377 (2024), https://doi.org/10.1016/j.carbpol.2023.121377.Search in Google Scholar PubMed

[13] G. Crini, P.-M. Badot. Prog. Polym. Sci. 33(4), 399 (2008), https://doi.org/10.1016/j.progpolymsci.2007.11.001.Search in Google Scholar

[14] M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu. ACS Sustain. Chem. Eng. 2(7), 1592 (2014), https://doi.org/10.1021/sc500336h.Search in Google Scholar

[15] M. P. Gundupalli, D. Bhattacharyya. Energy 236, 121466 (2021), https://doi.org/10.1016/j.energy.2021.121466.Search in Google Scholar

[16] P. Jana, S. S. Boxi. J. Nat. Fibers 19(8), 2861 (2022), https://doi.org/10.1080/15440478.2020.1827118.Search in Google Scholar

[17] D. Lebedeva, S. Hijmans, A. P. Mathew, E. Subbotina, J. S. M. Samec. ACS Agric. Sci. Technol. 2(2), 349 (2022), https://doi.org/10.1021/acsagscitech.1c00248.Search in Google Scholar

[18] C. Namasivayam, D. Kavitha. Dyes Pigm. 54(1), 47 (2002), https://doi.org/10.1016/s0143-7208(02)00025-6.Search in Google Scholar

[19] D. Kavitha, C. Namasivayam. Dyes Pigm. 74(1), 237 (2007), https://doi.org/10.1016/j.dyepig.2006.01.040.Search in Google Scholar

[20] T. K. Arumugam, P. Krishnamoorthy, N. R. Rajagopalan, S. Nanthini, D. Vasudevan. Int. J. Biol. Macromol. 128, 655 (2019), https://doi.org/10.1016/j.ijbiomac.2019.01.185.Search in Google Scholar PubMed

[21] F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang, Z. J. M. A. Bai. Microchim. Acta 186, 1 (2019), https://doi.org/10.1007/s00604-019-3688-y.Search in Google Scholar PubMed

[22] K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora, C. A. Igwegbe. Curr. Res. Green Sustain. Chem. 4, 100179 (2021), https://doi.org/10.1016/j.crgsc.2021.100179.Search in Google Scholar

[23] M. Zhu, L. Kong, M. Xie, W. Lu, H. Liu, N. Li, Z. Feng, J. Zhan. J. Hazard. Mater. 413, 125438 (2021), https://doi.org/10.1016/j.jhazmat.2021.125438.Search in Google Scholar PubMed

[24] N. T. Vo, C. D. Pham, T. B. Ly, M. D. T. Dang, N. H. N. Do, P. K. Le. Biomass Convers. Biorefin. 1 (2023), https://doi.org/10.1007/s13399-023-04681-0.Search in Google Scholar

[25] L. N. Tan, N. C. T. Nguyen, A. M. H. Trinh, N. H. Do, K. A. Le. Sep. Purif. Technol. 304, 122415 (2023), https://doi.org/10.1016/j.seppur.2022.122415.Search in Google Scholar

[26] M. F. Hanafi, N. J. M. T. P. Sapawe. Mater. Today Proc. 31, A141 (2020).10.1016/j.matpr.2021.01.258Search in Google Scholar

[27] B. Bi, L. Xu, B. Xu, X. J. A. C. S. Liu. Appl. Clay Sci. 54(3–4), 242 (2011), https://doi.org/10.1016/j.clay.2011.09.003.Search in Google Scholar

[28] K. V. Kumar, V. Ramamurthi, S. J. D. Sivanesan. Dyes Pigm. 69(1–2), 102 (2006).10.1016/j.dyepig.2005.02.005Search in Google Scholar

[29] R. Narendar, K. P. Dasan. Compos. B Eng. 56, 770 (2014), https://doi.org/10.1016/j.compositesb.2013.09.028.Search in Google Scholar

[30] X. Sun, F. Xu, R. Sun, P. Fowler, M. Baird. Carbohydr. Res. 340(1), 97 (2005), https://doi.org/10.1016/j.carres.2004.10.022.Search in Google Scholar PubMed

[31] H. Sangian, A. Widjaja. IOP Conf. Ser. Mater. Sci. Eng. 306(1), 012046 (2018), https://doi.org/10.1088/1757-899x/306/1/012046.Search in Google Scholar

[32] Y. Liu, Y. Ke, Q. Shang, X. Yang, D. Wang, G. Liao. Chem. Eng. J. 451, 138934 (2023), https://doi.org/10.1016/j.cej.2022.138934.Search in Google Scholar

[33] M. Cao, B. W. Liu, L. Zhang, Z. C. Peng, Y. Y. Zhang, H. Wang, H.-B. Zhao, Y.-Z. Wang. Compos. B Eng. 225, 109309 (2021), https://doi.org/10.1016/j.compositesb.2021.109309.Search in Google Scholar

[34] X. Jiang, J. Zhang, F. You, C. Yao, H. Yang, R. Chen, P. Yu. Appl. Clay Sci. 228, 106624 (2022), https://doi.org/10.1016/j.clay.2022.106624.Search in Google Scholar

[35] C. Chartier, S. Buwalda, H. Van Den Berghe, B. Nottelet, T. Budtova. Int. J. Biol. Macromol. 202, 215 (2022), https://doi.org/10.1016/j.ijbiomac.2022.01.042.Search in Google Scholar PubMed

[36] C. Qiu, Q. Tang, X. Zhang, M. C. Li, X. Zhang, J. Xie, S. Zhang, Z. Su, J. Qi, H. Xiao, Y. Chen, Y. Jiang, C. F. de Hoop, X. Huang. J. Clean. Prod. 338, 130550 (2022), https://doi.org/10.1016/j.jclepro.2022.130550.Search in Google Scholar

[37] Y. Wang, H. Wang, H. Peng, Z. Wang, J. Wu, Z. Liu. Fibers Polym. 19, 340 (2018), https://doi.org/10.1007/s12221-018-7520-9.Search in Google Scholar

[38] N. H. N. Do, T. P. Luu, Q. B. Thai, D. K. Le, N. D. Q. Chau, S. T. Nguyen, P. K. Le, N. Phan-Thien, H. M. Duong. Mater. Chem. Phys. 242, 122267 (2020), https://doi.org/10.1016/j.matchemphys.2019.122267.Search in Google Scholar

[39] Z. Li, X. Song, S. Cui, Y. Jiao, C. Zhou. RSC Adv. 8(15), 8338 (2018), https://doi.org/10.1039/c8ra00358k.Search in Google Scholar PubMed PubMed Central

[40] S. Islam Md, C. Ang Bee, S. Gharehkhani, M. Afifi Amalina Binti. Carbon Lett. 20, 1 (2016), https://doi.org/10.5714/cl.2016.20.001.Search in Google Scholar

[41] A. S. Kamdod, M. V. P. Kumar. J. Polym. Environ. 30(12), 5274 (2022), https://doi.org/10.1007/s10924-022-02597-w.Search in Google Scholar

[42] X. Jiang, X. Xiang, S. Peng, L. Hou. Cellulose 26, 4515 (2019), https://doi.org/10.1007/s10570-019-02368-2.Search in Google Scholar

[43] W. Zhang, T. Huang, Y. Ren, Y. Wang, R. Yu, J. Wang, Q. Tu. Int. J. Biol. Macromol. 193, 2243 (2021), https://doi.org/10.1016/j.ijbiomac.2021.11.056.Search in Google Scholar PubMed

[44] M. A. Al-Ghouti, D. A. Da’ana. J. Hazard. Mater. 393, 122383 (2020), https://doi.org/10.1016/j.jhazmat.2020.122383.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0102).


Published Online: 2024-03-20
Published in Print: 2024-08-27

© 2024 IUPAC & De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Special issue on “Advanced materials for environmental protection and sustainability in Asean countries”
  5. Special topic papers
  6. Nanocomposite nanofibrous membranes of graphene and graphene oxide: water remediation potential
  7. Selection of graphene as a conductive additive for biomass-based activated carbon electrode in capacitive deionization: acid-treated as a practical approach to reduce graphene content
  8. Biochar-based catalysts: a potential disposal of plant biomass from phytoremediation
  9. Bio-based aerogel composites of coconut pith-derived carbon and chitosan for efficient anionic dye-polluted water treatment
  10. Study on synthesizing the complex of sorafenib with 2-hydroxypropyl-β-cyclodextrin to enhance the anticancer activity of the drug substance
  11. An antimicrobial acrylic polyurethane coating with TiO2-Ag hybrid nanoparticles
  12. Efficient synthesis of tricaproin: catalyst and reaction optimization
  13. Enhanced photocatalytic and antibacterial properties of silver–zirconia nanoparticles for environmental pollution treatment
  14. Preparation of sulfur nanoparticles in chitosan-copper complex and investigation of its nematicidal activity against Pratylenchus pratensis in vitro
  15. Fabrication of cathode electrodes based on activated carbon, reduced-graphene for hybrid capacitive deionization technology
  16. Biodegradable thermochromic polylactic acid (PLA) sensor
  17. Effect of ground tyre rubber content on self-healing properties of natural rubber composites
  18. Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water
  19. Producing an antibacterial acrylic polyurethane coating with acylated mimosa tannins
  20. Effect of multi-walled carbon nanotubes reinforcement on self-healing performance of natural rubber
  21. Mechanical properties of web kapok/fiberglass-epoxy hybrid composites for marine structures
  22. Investigation on recycling and reprocessing ability of self-healing natural rubber based on ionic crosslink network
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0102/html
Scroll to top button