Abstract
Reasoning in terms of molecules has since long become fully embedded in any chemistry discourse. On the other hand, students’ familiarization with the molecular level in pre-university instruction is not always satisfactory, and their ability to view chemical phenomena in terms of what molecules do may not reach the extent and quality that would be needed to ensure effective conceptual understanding. Students may remain uncertain about the interpretation of the molecular features of a number of phenomena even through undergraduate instruction. Removing uncertainties and promoting comfortable familiarization is increasingly becoming an imperative for chemistry education, in view of the novel central role that the molecular level is acquiring not only for the customary interpretation of phenomena, but for the high variety of applications that have been blooming in recent years. Consequently, learners’ familiarization with the world of molecules needs to become more informative and complete. It is equally important that the information that they acquire about molecules be consistent with the modern descriptions, which are based on quantum mechanics. This requires accurate search for optimal balances between the need to simplify the terms of the descriptions in order to make them accessible to leaners according to the different levels of chemistry learning, and the simultaneous need to maintain adequate conceptual rigour. The present work outlines approaches which have proved viable and effective, and which rely on accurate use of language and visualization as the major explanation resources.
References
[1] H. Diels. I presocratici: testimonianze e frammenti, Laterza, Bari (1969).Suche in Google Scholar
[2] Lucretius. De Rerum Natura, 1st century BC. Text used: Lucrezio, La natura delle cose, Milan, Mondadori (1992).Suche in Google Scholar
[3] E. Martinez-Hernandez. Curr. Opin. Chem. Eng. 17, 35 (2017), https://doi.org/10.1016/j.coche.2017.05.005.Suche in Google Scholar
[4] P. Anastas, J. B. Zimmerman. Chem 1, 10 (2016), https://doi.org/10.1016/j.chempr.2016.06.016.Suche in Google Scholar
[5] P. G. Mahaffy, A. K. Elgersma. Curr. Opin. Green Sustain. Chem. 37, 100663 (2022), https://doi.org/10.1016/j.cogsc.2022.100663.Suche in Google Scholar
[6] G. Tsaparlis, G. Papaphotis. Chem. Educ. Res. Pract. Eur. 3(2), 129 (2002), https://doi.org/10.1039/b2rp90011d.Suche in Google Scholar
[7] L. Colletti. Educ. Sci. 13, 168 (2023), https://doi.org/10.3390/educsci13020168.Suche in Google Scholar
[8] R. V. Olsen. Int. J. Sci. Educ. 24, 565 (2022), https://doi.org/10.1080/09500690110073982.Suche in Google Scholar
[9] P. Garik, J. Kelley, A. Crosby, D. Dill, A. Golger, M. Z. Hoffman. NARST paper 20052 (2005), http://quantumconcepts.bu.edu.Suche in Google Scholar
[10] R. Cervellati, D. Perugini. J. Chem. Educ. 58, 568 (1981), https://doi.org/10.1021/ed058p568.Suche in Google Scholar
[11] G. Tsaparlis, G. Papaphotis. Int. J. Sci. Educ. 31(7), 895 (2009), https://doi.org/10.1080/09500690801891908.Suche in Google Scholar
[12] K. Adbo, K. S. Taber. Int. J. Sci. Educ. 31(6), 757 (2009), https://doi.org/10.1080/09500690701799383.Suche in Google Scholar
[13] V. Dangur, S. Avargil, U. Peskinb, Y. J. Dori. Chem. Educ. Res. Pract. 15, 297 (2014), https://doi.org/10.1039/c4rp00025k.Suche in Google Scholar
[14] H. K. E. Stadermann, M. J. Goedhart. Int. J. Sci. Educ. 42(6), 997 (2020), https://doi.org/10.1080/09500693.2020.1745926.Suche in Google Scholar
[15] L. Markus, S. Sungkim, M. Z. Bin Ishak. Malays. J. Soc. Sci. Humanit. 6(5), 190 (2021), https://doi.org/10.47405/mjssh.v6i5.774.Suche in Google Scholar
[16] L. Mammino. Phys. Sci. Rev. (2023), https://doi.org/10.1515/psr-2022-0318.Suche in Google Scholar
[17] L. Mammino. ISTE International Conference Proceedings, D. Mogari, A. Mji, U. I. Ogbonnaya (Eds.), pp. 133–147, UNISA Press, Pretoria (2013).Suche in Google Scholar
[18] S. Goulart da Cunha, D. de Vargas Dias, L. Streit. J. Chem. Educ. 100(2), 627 (2023), https://doi.org/10.1021/acs.jchemed.2c00798.Suche in Google Scholar
[19] C. Stefani, G. ios Tsaparlis. J. Res. Sci. Teach 46(5), 520 (2009), https://doi.org/10.1002/tea.20279.Suche in Google Scholar
[20] O. Lanes. Sci. Am. (2023).Suche in Google Scholar
[21] NSF Award Search: Award # 2015205 – Cross-Discipline Approach to Quantum Computing in High Schools: Building towards a Quantum Computing Workforce, https://www.nsf.gov/awardsearch/showAward?AWD_ID=2015205&HistoricalAwards=false1/3.Suche in Google Scholar
[22] K. Krijtenburg-Lewerissa, H. J. Pol, A. Brinkman, W. R. van Joolingen. Phys. Rev. Phys. Educ. Res. 13, 010109 (2017), https://doi.org/10.1103/physrevphyseducres.13.010109.Suche in Google Scholar
[23] B. Bungum, M. V. Bøe, E. K. Henriksen. Sci. Educ. 102(4), 856 (2018), https://doi.org/10.1002/sce.21447.Suche in Google Scholar
[24] K. Krijtenburg-Lewerissa, H. J. Pol, A. Brinkman, W. R. van Joolingen. Int. J. Sci. Educ. 41(3), 349 (2019), https://doi.org/10.1080/09500693.2018.1550273.Suche in Google Scholar
[25] H. K. E. Stadermann, E. van den Berg, M. J. Goedhart. Phys. Rev. Phys. Educ. Res. 15(1), 010130 (2019), https://doi.org/10.1103/physrevphyseducres.15.010130.Suche in Google Scholar
[26] E. Bonacci. Athens J. Educ. 7(3), 313 (2020), https://doi.org/10.30958/aje.7-3-5.Suche in Google Scholar
[27] M. Fanaro, M. R. Otero. Science Education Research in Latin America, pp. 133–155, Brill, Leiden (2020).Suche in Google Scholar
[28] M. Di Mauro, A. Naddeo. Phys. Sci. Forum 2, 8 (2021), https://doi.org/10.3390/ECU2021-09283.Suche in Google Scholar
[29] Y. He, S. Zha, W. He. Proceedings of Innovate Learning Summit 2021, Online, United States: Association for the Advancement of Computing in Education, T. Bastiaens (Ed.), pp. 418–422 (2021), https://www.learntechlib.org/primary/p/220311/.Suche in Google Scholar
[30] K. Stadermann, M. Goedhart. Phys. Educ. 57, 025014 (2022), https://doi.org/10.1088/1361-6552/ac39e7.Suche in Google Scholar
[31] M. V. Bøe, S. Viefers. Sci. Educ. 32, 297 (2023), https://doi.org/10.1007/s11191-021-00297-w.Suche in Google Scholar
[32] L. Mammino (Ed.). Green Chemistry and Computational Chemistry, Elsevier, Amsterdam (2021).Suche in Google Scholar
[33] P. Vishwakarma. Int. J. Sci. Manag. Eng. Res. 01(05), 183 (2016).Suche in Google Scholar
[34] G. Tsaparlis. Concepts of Matter in Science Education. Innovations in Science Education and Technology, G. Tsaparlis, H. Sevian (Eds.), Springer, Dordrecht, Vol. 19 (2013).10.1007/978-94-007-5914-5Suche in Google Scholar
[35] S. Simpson, A. Evanoski-Cole, K. Gast, M. C. Wedvik, P. W. Schneider, I. Klingensmith. Chem. Teach. Int. 3, 20190014 (2020), https://doi.org/10.1515/cti-2019-0014.Suche in Google Scholar
[36] L. Mammino. Green chemistry and Computational Chemistry: Shared Lessons in Sustainability, L. Mammino (Ed.), pp. 1–39, Elsevier, Amsterdam (2021).10.1016/B978-0-12-819879-7.00040-4Suche in Google Scholar
[37] L. Mammino. Sust. Chem. Pharm. 18, 100283 (2020), https://doi.org/10.1016/J.SCP.2020.100283.Suche in Google Scholar
[38] L. Mammino. Sust. Chem. Pharm. 34, 101151 (2023), https://doi.org/10.1016/j.scp.2023.101151.Suche in Google Scholar
[39] L. Mammino. Chimica Viva, G. D’Anna, Florence (1993).Suche in Google Scholar
[40] L. Mammino. Chimica Aperta, G. D’Anna, Florence (2003).Suche in Google Scholar
[41] L. Mammino. LUMAT (Int. J. Math, Sci. Technol. Educ.), Spec. Issue ECRICE 3(4), 482 (2015).10.31129/lumat.v3i4.1018Suche in Google Scholar
[42] L. Mammino. Anu. Latinoam. Educ. Quím.(ALDEQ) XII, 70 (1999).Suche in Google Scholar
[43] L. Mammino. Science Teachers’ Use of Visual Representations, B. Eilam, J. Gilbert (Eds.), pp. 195–225, Springer, Cham (2014).10.1007/978-3-319-06526-7_9Suche in Google Scholar
[44] G. Pinto Cañon (Ed.). Didáctica de la Química y Vida Cotidiana, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Industriales, Sección de Publicaciones, Madrid (2003).Suche in Google Scholar
[45] L. Mammino. The Language of Science, S. Seepe, D’ Dowling (Eds.), pp. 52–71, Vyvlia Publishers, Johannesburg (2000).Suche in Google Scholar
[46] L. Mammino. CHEMEDA, The Aust. J. Chem. Educ. 48 & 49 & 50, 30 (1998).10.1212/WNL.50.3_Suppl_2.48Suche in Google Scholar
[47] L. Mammino. SAARMSTE Conference Proceedings, pp. 237–243, SAARMSTE, Pretoria (2002).Suche in Google Scholar
[48] L. Mammino. Anu. Latinoam. Educ. Quím.(ALDEQ) XXVIII, 132 (2013).Suche in Google Scholar
[49] Y. I. Rubanza. Rehabilitating African Languages, K. K. Prah (Ed.), CASAS Book series No 18, Capetown, pp. 39–51 (2002).Suche in Google Scholar
© 2024 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages
Artikel in diesem Heft
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages