Abstract
Density functional study (DFT) is performed for understanding the reactivity, aromaticity, and UV-visible absorption spectra of chrysene-based materials. Effect of BN doping on the said parameters are analyzed along with the effect of –Me (methyl), –OH (hydroxyl), –CHO (formyl) –COOH (carboxyl) and –CN (cyano) substituents. Global reactivity parameters viz. energy of HOMO (E HOMO), global hardness (η), chemical potential (μ) and electrophilicity (ω) are computed. Nucleus independent chemical shifts (NICS) values are estimated to study the variation in aromaticity. Time dependent density functional theory (TD-DFT) is used to study the UV–Visible absorption spectra. Effects of BN doping and substituents on corresponding dipole moments and band gaps are also analyzed. Presence of BN unit and/or substituents induced considerable impact on global reactivity, dipole moment, band gap and aromaticity of the chosen systems, especially for BN doped chrysene at the edge. Absorption spectra which are red shifted in presence of BN and substituents are mostly found within the UV-region.
Funding source: Department of Science and Technology, Govt. of India
Award Identifier / Grant number: SB/S1/PC-17/2014
Acknowledgments
Authors sincerely acknowledge the Department of Science and Technology, New Delhi, (Grant No. SB/S1/PC-17/2014) India for providing financial assistance required for the study.
References
[1] K. Takimiya, I. Osaka, M. Nakano. Chem. Mater. 26, 587 (2014), https://doi.org/10.1021/cm4021063.Search in Google Scholar
[2] L. Dou, J. You, Z. Hong, X. Xu, G. Li, R. A. Street, Y. Yang. Adv. Mater. 25, 6642 (2013), https://doi.org/10.1002/adma.201302563.Search in Google Scholar PubMed
[3] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao. J. Am. Chem. Soc. 135, 6724 (2013), https://doi.org/10.1021/ja400881n.Search in Google Scholar PubMed
[4] P. Tyagi, A. Venkateswararao, K. R. J. Thomas. J. Org. Chem. 76, 4571 (2011), https://doi.org/10.1021/jo2004764.Search in Google Scholar PubMed
[5] A. Facchetti. Chem. Mater. 23, 733 (2011), https://doi.org/10.1021/cm102419z.Search in Google Scholar
[6] Z. A. Tehrani, K. S. Kim. Int. J. Quant Chem. 116, 622 (2016), https://doi.org/10.1002/qua.25109.Search in Google Scholar
[7] H. J. Schneider. Acc. Chem. Res. 46, 1010 (2013), https://doi.org/10.1021/ar3000579.Search in Google Scholar PubMed
[8] L. M. Salonen, M. Ellermann, F. Diederich. Angew. Chem., Int. Ed. 50, 4808 (2011), https://doi.org/10.1002/anie.201007560.Search in Google Scholar PubMed
[9] B. Saha, P. K. Bhattacharyya. New J. Chem. 41, 5040 (2017), https://doi.org/10.1039/c7nj00057j.Search in Google Scholar
[10] Y. H. Chung, L. Sheng, X. Xing, L. Zheng, M. Bian, Z. Chen, L. Xiao, Q. Gonga. J. Mater. Chem. C 3, 1794 (2015), https://doi.org/10.1039/c4tc02669a.Search in Google Scholar
[11] T. H. E. Assaad, M. Auer, R. Castaneda, K. M. Hallal, F. M. Jradi, L. Mosca, R. S. Khnayzer, D. Patra, T. V. Timofeeva, J. Bredas, E. J. M. List-Kratochvil, B. Wex, B. R. Kaafarani. J. Mater. Chem. C 4, 3041 (2016), https://doi.org/10.1039/c5tc02849c.Search in Google Scholar
[12] J. S. A. Ishibashi, A. Dargelos, C. Darrigan, A. Chrostowska, S. Y. Liu. Organometallics 36, 2494 (2017), https://doi.org/10.1021/acs.organomet.7b00296.Search in Google Scholar
[13] J. W. Levell, A. Ruseckas, J. B. Henry, Y. Wang, A. D. Stretton, A. R. Mount, T. H. Galow, I. D. W. Samuel. J. Phys. Chem. A 114, 13291 (2010), https://doi.org/10.1021/jp106622n.Search in Google Scholar PubMed
[14] K. R. J. Thomas, N. Kapoor, M. N. K. P. Bolisetty, J. H. Jou, Y. L. Chen, Y. C. Jou. J. Org. Chem. 77, 3921 (2012), https://doi.org/10.1021/jo300285v.Search in Google Scholar PubMed
[15] A. S. Ionkin, W. J. Marshall, B. M. Fish, L. M. Bryman, Y. Wang. Chem. Commun., 2319 (2008), https://doi.org/10.1039/b715386d.Search in Google Scholar PubMed
[16] A. Li, S. H. Wena, J. L. Song, W. Q. Deng. Org. Electron. 10, 1054 (2009), https://doi.org/10.1016/j.orgel.2009.05.016.Search in Google Scholar
[17] X. Y. Wang, J. Y. Wang, J. Pei. Chem. Eur. J. 20, 1 (2014), https://doi.org/10.1002/chem.201405627.Search in Google Scholar PubMed
[18] J. Tasseroul, M. Mercedes, L. Garcia, J. Dosso, F. Simon, S. Velari, A. T. Vita, P. Tecilla, D. Bonifazi. J. Org. Chem. 85, 3454 (2020), https://doi.org/10.1021/acs.joc.9b03202.Search in Google Scholar PubMed
[19] J. M. Farrell, C. Mutzel, D. Bialas, M. Rudolf, K. Menekse, A. M. Krause, M. Stolte, F. Wurthner. J. Am. Chem. Soc. 141, 9096 (2019), https://doi.org/10.1021/jacs.9b04675.Search in Google Scholar PubMed
[20] J. Huang, Y. Li. Front. Chem. 6, 341 (2018), https://doi.org/10.3389/fchem.2018.00341.Search in Google Scholar PubMed PubMed Central
[21] C. R. McConnell, S. Y. Liu. Chem. Soc. Rev. 48, 3436 (2019), https://doi.org/10.1039/c9cs00218a.Search in Google Scholar PubMed PubMed Central
[22] A. Abengozar, D. Sucunza, P. Garcia-Garcia, D. Sampedro, A. Perez-Redondo, J. J. Vaquero. J. Org. Chem. 84, 7113 (2019), https://doi.org/10.1021/acs.joc.9b00800.Search in Google Scholar PubMed
[23] C. Zhang, L. Zhang, C. Sun, W. Sun, X. Liu. Org. Lett. 21, 3476 (2019), https://doi.org/10.1021/acs.orglett.9b00530.Search in Google Scholar PubMed
[24] H. Orucu, N. Acar. Comput. Theor. Chem. 1056, 11 (2015), https://doi.org/10.1016/j.comptc.2015.01.001.Search in Google Scholar
[25] A. Kınal, N. Acar. J. Mol. Struct. THEOCHEM 949, 36 (2010), https://doi.org/10.1016/j.theochem.2010.02.033.Search in Google Scholar
[26] N. Acar. Asian J. Chem. 23, 597 (2011).10.15358/0935-0381-2011-11-597Search in Google Scholar
[27] W. Sotoyama, H. Sato, M. Kinoshita, T. Takahashi, A. Matsuura, J. Kodama, N. Sawatari, H. Inoue. Tetra-substituted pyrenes: new class of blue emitter for organic light-emitting diodes InSID. In Symposium Digest of Technical Papers, pp. 1294–1297 (2003).10.1889/1.1832523Search in Google Scholar
[28] A. Kathiravan, M. Panneerselvam, K. Sundaravel, N. Pavithra, V. Srinivasan, S. Anandand, M. Jaccob. Phys. Chem. Chem. Phys. 18, 13332 (2016), https://doi.org/10.1039/c6cp00571c.Search in Google Scholar PubMed
[29] O. Khorev, C. D. Bosch, M. Probst, R. Haner. Chem. Sci. 5, 1506 (2014), https://doi.org/10.1039/c3sc53316f.Search in Google Scholar
[30] T. L. Wu, H. H. Chou, P. Y. Huang, C. H. Cheng, R. S. Liu. J. Org. Chem. 79, 267 (2014), https://doi.org/10.1021/jo402429q.Search in Google Scholar PubMed
[31] X. Zhao, C. Ge, X. Yang, X. Gao. Mater. Chem. Front. 1, 1635 (2017), https://doi.org/10.1039/c7qm00030h.Search in Google Scholar
[32] H. Shin, H. Jung, B. Kim, J. Lee, J. Moon, J. Kim, J. Park. J. Mater. Chem. C 4, 3833 (2016), https://doi.org/10.1039/c5tc03749b.Search in Google Scholar
[33] A. N. Simonov, P. Kemppinen, C. P. Gonzalo, J. F. Boas, A. Bilic, A. D. Scully, A. Attia, A. Nafady, E. A. Mashkina, K. N. Winzenberg, S. E. Watkins, A. M. Bond. J. Phys. Chem. B 118, 6839 (2014), https://doi.org/10.1021/jp501220v.Search in Google Scholar PubMed
[34] A. Abengozar, I. Valencia, G. G. Otarola, D. Sucunza, P. G. García, A. P. Redondo, F. Mendicutib, J. J. Vaquero. Chem. Commun. 56, 3669 (2020), https://doi.org/10.1039/c9cc09998k.Search in Google Scholar PubMed
[35] D. Ghosh, G. Periyasamy, S. K. Pati. Phys. Chem. Chem. Phys. 13, 20627 (2011), https://doi.org/10.1039/c1cp22104c.Search in Google Scholar PubMed
[36] B. Saha, P. K. Bhattacharyya. RSC Adv. 6, 79768 (2016), https://doi.org/10.1039/c6ra15016k.Search in Google Scholar
[37] B. Saha, P. K. Bhattacharyya. Phys. Sci. Rev. 8, 793 (2023), https://doi.org/10.1515/psr-2020-0086.Search in Google Scholar
[38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. MontgomeryJr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. in Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT (2010).Search in Google Scholar
[39] T. Koopmans. Physica 1, 104 (1934), https://doi.org/10.1016/s0031-8914(34)90011-2.Search in Google Scholar
[40] R. G. Parr, L. V. Szentpaly, S. Liu. J. Am. Chem. Soc. 121, 1922 (1999), https://doi.org/10.1021/ja983494x.Search in Google Scholar
[41] R. G. Parr, W. Yang. in Density-Functional Theory of Atoms and Molecules; International Series of Monographs on Chemistry, Oxford University Press, Oxford (1989).Search in Google Scholar
[42] P. V. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, N. Hommes. J. Am. Chem. Soc. 118, 6317 (1996), https://doi.org/10.1021/ja960582d.Search in Google Scholar PubMed
[43] J. Fabian. Dyes Pigm. 84, 36 (2010), https://doi.org/10.1016/j.dyepig.2009.06.008.Search in Google Scholar
[44] J. Tomasi, B. Mennucci, R. Cammi. Chem. Rev. 105, 2999 (2005), https://doi.org/10.1021/cr9904009.Search in Google Scholar PubMed
[45] P. Sjoberg, P. Politzer. J. Phys. Chem. 94, 3959 (1990), https://doi.org/10.1021/j100373a017.Search in Google Scholar
[46] G. S. Remya, C. H. Suresh. Phys. Chem. Chem. Phys. 18, 20615 (2016), https://doi.org/10.1039/c6cp02936a.Search in Google Scholar PubMed
[47] A. K. Phukan, R. P. Kalagi, S. R. Gadre, E. D. Jemmis. Inorg. Chem. 43, 5824 (2004), https://doi.org/10.1021/ic049690o.Search in Google Scholar PubMed
[48] E. R. Abbey, L. N. Zakharov, S. Y. Liu. J. Am. Chem. Soc. 130, 7250 (2008), https://doi.org/10.1021/ja8024966.Search in Google Scholar PubMed
[49] H. Shin, H. Jung, B. Kim, J. Lee, J. Moon, J. Kim, J. Park. J. Mater. Chem. C 4, 3833 (2016), https://doi.org/10.1039/c5tc03749b.Search in Google Scholar
[50] R. G. Pearson. J. Am. Chem. Soc. 85, 3533 (1963), https://doi.org/10.1021/ja00905a001.Search in Google Scholar
[51] T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak. Chem. Rev. 114, 6383 (2014), https://doi.org/10.1021/cr400252h.Search in Google Scholar PubMed
[52] P. v. R. Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. Jiao, R. Puchta, N. Hommes. Org. Lett. 3, 2465 (2001), https://doi.org/10.1021/ol016217v.Search in Google Scholar PubMed
[53] D. Ghosh, G. Periyasamy, S. K. Pati. Phys. Chem. Chem. Phys. 13, 20627 (2011), https://doi.org/10.1039/c1cp22104c.Search in Google Scholar PubMed
[54] P. Rani, G. S. Dubey, V. Jindal. Phys. E 62, 28 (2014), https://doi.org/10.1016/j.physe.2014.04.010.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2023-1105).
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages
Articles in the same Issue
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages