3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
-
Akingbolabo Daniel Ogunlakin
, Juliana Bunmi Adetunji
, Matthew Iyobhebhe , Toluwanimi Ayonitemi Ajiboye , Gideon Ampoma Gyebi , Peluola Olujide Ayeni , Damilare Iyinkristi Ayokunle , Mubo Adeola Sonibare , Joel Ojogbane Onoja , Enitan O. Adesanya, Omolola Adenike Ajayi-Odoko
, Oluwafemi Adeleke Ojo and Sophie Adedamola Adeyeye
Abstract
Various derivatives of cinnamic acid have been reported to possess significant activities such as antioxidant and hepatoprotective, and neuroprotective activities. Interestingly, testicular toxicity has been linked to several causes, with oxidative damage being one of the pathophysiological mechanisms. 3-(4-methoxyphenyl) acrylic acid (1), a derivative of cinnamic acid, was synthesized and then investigated for its effects on iron-induced testicular injury and oxidative stress via ex vivo and in silico studies, respectively. Evaluations were done on KAD-1’s FRAP, DPPH free radical scavenging activity, and iron chelating potential. Through the ex vivo incubation of tissue supernatant and 0.1 mM FeSO4 for 30 min at 37 °C with different concentration of 1, oxidative testicular damage treatments were induced. The scavenging property of 1 increases significantly (p < 0.05) as the concentration increases when compared with the standard quercetin. The MDA, CAT, ATPase, and ENTPDase activities were reduced when testicular damage was induced (p < 0.05). The group treated with 30 mg/mL had the highest level of MDA. A significant rise in GSH level and activity of SOD were observed. The result obtained indicated that 1 has the potential to prevent oxidative testicular toxicity, as evidenced by its capacity to control nucleotide hydrolysis and reduce oxidative stress. Overall, the results of this experimental study point to some possible uses of 3-(4-methoxyphenyl) acrylic acid (1) in the prevention of oxidative testicular dysfunction. Therefore, 3-(4-methoxyphenyl) acrylic acid (1) would be a good product in developing a medication to alleviate male infertility.
-
Research funding: This research received no external funding.
References
[1] S. Dutta, P. Sengupta, P. Slama, S. Roychoudhury. Int. J. Mol. Sci. 22, 10043 (2021), https://doi.org/10.3390/ijms221810043.Search in Google Scholar PubMed PubMed Central
[2] P. Sengupta, K. Bhattacharya, S. Dutta. Asian Pac. J. Reprod. 8, 220–226 (2019), https://doi.org/10.4103/2305-0500.268143.Search in Google Scholar
[3] P. Sengupta, S. Dutta, U. D’Souza, A. Alahmar. Chem. Biol. Lett. 7, 75–84 (2020).Search in Google Scholar
[4] J. A. Allen, T. Diemer, P. Janus, K. H. Hales, D. B. Hales. 2004. Endocrine. 25, 265–275.10.1385/ENDO:25:3:265Search in Google Scholar PubMed
[5] M. K. P. Selvam, P. Sengupta, A. Agarwal. Sperm DNA fragmentation and male infertility. In Genetics of Male Infertility, pp. 155–172, Springer, Berlin/Heidelberg, Germany (2020).10.1007/978-3-030-37972-8_9Search in Google Scholar
[6] O. L. Erukainure, O. M. Ijomone, O. A. Oyebode, C. I. Chukwuma, M. Aschner, M. S. Islam. Food Chem. Toxicol. 127, 206–217 (2019), https://doi.org/10.1016/j.fct.2019.03.044.Search in Google Scholar PubMed
[7] A. Agarwal, L. H. Sekhon. Hum. Fertil. 13, 217–225 (2010), https://doi.org/10.3109/14647273.2010.532279.Search in Google Scholar PubMed
[8] P. Sharma, P. Kaur, P. Ghanghas, J. Kaur, N. Kaushal. Reprod. Toxicol. 96, 349–358 (2020), https://doi.org/10.1016/j.reprotox.2020.08.005.Search in Google Scholar PubMed
[9] M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, J. Telser. Int. J. Biochem. Cell Biol. 39, 44–84 (2007), https://doi.org/10.1016/j.biocel.2006.07.001.Search in Google Scholar PubMed
[10] R. Henkel, I. S. Sandhu, A. Agarwal. Andrologia 51, e13162 (2019), https://doi.org/10.1111/and.13162.Search in Google Scholar PubMed
[11] M. Rychlicka, A. Rot, A. Gliszczyńska. Foods 10, 1417 (2021), https://doi.org/10.3390/foods10061417.Search in Google Scholar PubMed PubMed Central
[12] S. Tachai, N. Nuntawong. Nat. Prod. Res. 30, 2215–2219 (2016), https://doi.org/10.1080/14786419.2016.1146884.Search in Google Scholar PubMed
[13] N. H. Gay, K. Phopin, W. Suwanjang, N. Songtawee, W. Ruankham, P. Wongchitrat, S. Prachayasittikul, V. Prachayasittikul. Neurochem. Res. 43, 619–636 (2018), https://doi.org/10.1007/s11064-017-2463-x.Search in Google Scholar PubMed
[14] A. D. Ogunlakin. Isolation of bioactive compounds from selected Nigerian medicinal plants for management of letrozole-induced polycystic ovarian syndrome in rats. Doctoral dissertation. University of Ibadan, Ibadan, Nigeria (2021).Search in Google Scholar
[15] W. Brand-Williams, M. E. Cuvelier, C. L. Berset. LWT - Food Sci. Technol. 28, 25–30 (1995), https://doi.org/10.1016/S0023-6438(95)80008-5.Search in Google Scholar
[16] Z. P. Ruan, L. L. Zhang, Y. M. Lin. Molecules 13, 2545–2556 (2008), https://doi.org/10.3390/molecules13102545.Search in Google Scholar PubMed PubMed Central
[17] I. F. Benzie, J. J. Strain. Anal. Biochem. 239, 70–76 (1996), https://doi.org/10.1006/abio.1996.0292.Search in Google Scholar PubMed
[18] A. B. Ojo, G. A. Gyebi, A. Alabi, M. Iyobhebhe, A. B. Kayode, C. O. Nwonuma, O. A. Ojo. J. Mol. Struct. 1268, 133675 (2022), https://doi.org/10.1016/j.molstruc.2022.133675.Search in Google Scholar
[19] F. A. Gad, S. M. Farouk, M. A. Emam. Environ. Sci. Pollut. Res. 28, 2379–2390 (2021), https://doi.org/10.1007/s11356-020-10674-7.Search in Google Scholar PubMed
[20] O. L. Erukainure, O. Atolani, P. Banerjee, R. Abel, O. J. Pooe, O. S. Adeyemi, R. Preissner, C. I. Chukwuma, N. A. Koorbanally, M. Isla. Amino Acids 53, 359–380 (2021), https://doi.org/10.1007/s00726-021-02954-4.Search in Google Scholar PubMed
[21] S. E. Owumi, C. E. Irozuru, U. O. Arunsi, H. O. Faleke, A. K. Oyelere. J. Food Biochem. 46, e14090 (2022), https://doi.org/10.1111/jfbc.14090.Search in Google Scholar PubMed
[22] J. J. Pignatello, E. Oliveros, A. MacKay. Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006), https://doi.org/10.1080/10643380500326564.Search in Google Scholar
[23] S. C. Pereira, P. F. Oliveira, S. R. Oliveira, M. D. Pereira, M. G. Alves. Antioxidants 10, 1365 (2021), https://doi.org/10.3390/antiox10091365.Search in Google Scholar PubMed PubMed Central
[24] Y. Liu, Z. Xiao, F. Chen, L. Yue, H. Zou, J. Lyu. Sci. Total Environ. 780, 146578 (2021), https://doi.org/10.1016/j.scitotenv.2021.146578.Search in Google Scholar PubMed
[25] A. Skumar, S. S. S. Abuthahir, H. Y. Aboul-Enein. Pharmacia 69, 447–451 (2022), https://doi.org/10.3897/pharmacia.69.e77829.Search in Google Scholar
[26] D. Huang, B. Ou, R. L. Prior. J. Agric. Food Chem. 53, 1841–1856 (2005), https://doi.org/10.1021/jf030723c.Search in Google Scholar PubMed
[27] L. Aksoy, E. Kolay, Y. Ağılönü, Z. Aslan, M. Kargıoğlu. Saudi J. Biol. Sci. 20, 235–239 (2013), https://doi.org/10.1016/j.sjbs.2013.02.003.Search in Google Scholar PubMed PubMed Central
[28] M. M. Rahman, M. B. Islam, M. Biswas, A. H. Khurshid Alam. BMC Res. Notes. 8, 621 (2015). https://doi.org/10.1186/s13104-015-1618-6.Search in Google Scholar PubMed PubMed Central
[29] S. Kalia, V. K. Bharti, A. Giri, B. Kumar, A. Arora, S. S. Balaje. Sci. Rep. 8, 5954 (2018), https://doi.org/10.1038/s41598-018-24409-9.Search in Google Scholar PubMed PubMed Central
[30] B. O. Ajiboye, B. E. Oyinloye, O. A Ojo, O. E. Lawal, Y. A. Jokomba, B. A. Balogun, A. O. Adeoye, O. R. Ajuwon. Bioinform. Biol. Insights 16, 1–17 (2022), https://doi.org/10.1177/11779322221115546.Search in Google Scholar PubMed PubMed Central
[31] K. A. Olofinsan, V. F. Salau, O.L. Erukainure, M.S. Islam. Andrologia 53, e14179 (2021), https://doi.org/10.1111/and.14179.Search in Google Scholar PubMed
[32] V. F. Salau, O. L. Erukainure, C. U. Ibeji, T. A. Olasehinde, N. A. Koorbanally, M. S. Islam. Neurotox. Res. 37, 944–955 (2020), https://doi.org/10.1007/s12640-019-00099-7.Search in Google Scholar PubMed
[33] R. M. Han, J. P. Zhang, L. H. Skibsted. Molecules 17, 2140–2160 (2012), https://doi.org/10.3390/molecules17022140.Search in Google Scholar PubMed PubMed Central
[34] S. Liga, C. Paul, F. Péter. Plants 12, 2732 (2023), https://doi.org/10.3390/plants12142732.Search in Google Scholar PubMed PubMed Central
[35] C. Liang, X. Zhang, M. Yang, X. Dong. Adv. Matter. 31, e1904197 (2019), https://doi.org/10.1002/adma.201904197.Search in Google Scholar PubMed
[36] O. A. Ojo, J. C. Amanze, A. I. Oni, S. Grant, M. Iyobhebhe, T. C. Elebiyo, D. Rotimi, N. T. Asogwa, B. E. Oyinloye, B. O. Ajiboye. Sci. Rep. 12, 1–18 (2022), https://doi.org/10.1038/s41598-022-07015-8.Search in Google Scholar PubMed PubMed Central
[37] S. K. Shin, H. W. Cho, S. E. Song, D. K. Song. Pflügers Arch. - Eur. J. Physiol. 470, 1721–1737 (2018), https://doi.org/10.1007/S00424-018-2195-Z.470122018.Search in Google Scholar
[38] Y. Ho, Y. Xiong, W. Ma, A. Spector, D. S. Ho. J. Biol. Chem. 279, 32804–32812 (2004).10.1074/jbc.M404800200Search in Google Scholar PubMed
[39] B. O. Ajiboye, B. E. Oyinloye, P. E. Agboinghale, O. A. Ojo. J. Food Biochem. 43, e13065 (2019), https://doi.org/10.1111/jfbc.13065.Search in Google Scholar PubMed
[40] O. A. Ojo, A. I. Oni, S. Grant, J. Amanze, A. B. Ojo, O. A. Taiwo, R. F. Maimako, I. O. Evbuomwan, M. Iyobhebhe, C. O. Nwonuma. Front. Pharmacol. 13, 845196 (2022), https://doi.org/10.3389/fphar.2022.845196.Search in Google Scholar PubMed PubMed Central
[41] A. J. Akinyemi, G. R. Thomé, V. M. Morsch, N. B. Bottari, J. Baldissarelli, L. S. de Oliveira, J. F. Goularte, A. Belló-Klein, G. Oboh, M. R. C. Schetinger. Phytother. Res. 30, 1156–1163 (2016), https://doi.org/10.1002/ptr.5621.Search in Google Scholar PubMed
[42] S. Akomolafe, A. Akinyemi, O. Ogunsuyi, S. Oyeleye, G. Oboh, O. Adeoyo, Y. Allismith. Neuro.Toxicol. 62, 6–13 (2017), https://doi.org/10.1016/j.neuro.2017.04.008.Search in Google Scholar PubMed
[43] O. L. Erukainure, V. F. Salau, A. B. Oyenihi, N. Mshicileli, M. S. Islam. J. Food Biochem. 44, 1–13 (2020), https://doi.org/10.1111/jfbc.13315.Search in Google Scholar PubMed
[44] V. F. Salau, O. L. Erukainure, C. U. Ibeji, T. A. Olasehinde, N. A. Koorbanally, M. S. Islam. Neurotox. Res. 37, 944–955 (2019), https://doi.org/10.1007/s12640-019-00099-7.Search in Google Scholar PubMed
[45] A. Yimer, S. F. Forsido, G. Addis, A. Ayelign. Heliyon 9, e15331 (2023), https://doi.org/10.1016/j.heliyon.2023.e15331.Search in Google Scholar PubMed PubMed Central
[46] W. Wätjen, G. Michels, B. Steffan, P. Niering, Y. Chovolou, A. Kampkötter, Q. H. Tran-Thi, P. Proksch, R. Kahl. J. Nutr. 135, 525–531 (2005), https://doi.org/10.1093/jn/135.3.525.Search in Google Scholar PubMed
[47] F. Farhadi, B. Khameneh, M. Iranshahi, M. Iranshahy. Phytother. Res. 33, 13–40 (2019), https://doi.org/10.1002/ptr.6208.Search in Google Scholar PubMed
[48] T. B. Ribeiro, A. Melo, A. A. Vilas-Boas, M. Pintado. Flavonoids. In Natural Secondary Metabolites: From Nature, Through Science, to Industry, Vol. 22, pp. 73–105, Springer International Publishing, Cham (2023).10.1007/978-3-031-18587-8_4Search in Google Scholar
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages
Articles in the same Issue
- Frontmatter
- In this issue
- Special topic papers
- Ozone-initiated degradation of 1,2-dichlorobenzene over ceria-supported manganese, nickel, vanadium and iron catalysts
- The effect of chemical modification using citraconic anhydride on the stability of α-amylase from Aspergillus fumigatus
- Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
- Maximising the consistency of the presentation of the molecular level with its quantum mechanical description: challenges and opportunities
- The amide group and its preparation methods by acid-amine coupling reactions: an overview
- Surface tension measurement of FAP-based ionic liquid pendant drops in a high vacuum/gas cell
- Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach
- Crucial role of the internalisation of the distinction between dependent and independent variables for clearer chemistry understanding
- 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
- Computational study on reactivity, aromaticity, and absorption spectra of chrysene: effect of BN doping and substituents
- Health benefit of lipid composition of orange (Citrus sinensis) fruit pulp at different maturation stages