Home Physical Sciences 3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury
Article
Licensed
Unlicensed Requires Authentication

3-(4-methoxyphenyl) acrylic acid halts redox imbalance and modulate purinergic enzyme activity in iron-induced testicular injury

  • Akingbolabo Daniel Ogunlakin EMAIL logo , Juliana Bunmi Adetunji , Matthew Iyobhebhe , Toluwanimi Ayonitemi Ajiboye , Gideon Ampoma Gyebi , Peluola Olujide Ayeni , Damilare Iyinkristi Ayokunle , Mubo Adeola Sonibare , Joel Ojogbane Onoja , Enitan O. Adesanya EMAIL logo , Omolola Adenike Ajayi-Odoko , Oluwafemi Adeleke Ojo and Sophie Adedamola Adeyeye
Published/Copyright: March 25, 2024

Abstract

Various derivatives of cinnamic acid have been reported to possess significant activities such as antioxidant and hepatoprotective, and neuroprotective activities. Interestingly, testicular toxicity has been linked to several causes, with oxidative damage being one of the pathophysiological mechanisms. 3-(4-methoxyphenyl) acrylic acid (1), a derivative of cinnamic acid, was synthesized and then investigated for its effects on iron-induced testicular injury and oxidative stress via ex vivo and in silico studies, respectively. Evaluations were done on KAD-1’s FRAP, DPPH free radical scavenging activity, and iron chelating potential. Through the ex vivo incubation of tissue supernatant and 0.1 mM FeSO4 for 30 min at 37 °C with different concentration of 1, oxidative testicular damage treatments were induced. The scavenging property of 1 increases significantly (p < 0.05) as the concentration increases when compared with the standard quercetin. The MDA, CAT, ATPase, and ENTPDase activities were reduced when testicular damage was induced (p < 0.05). The group treated with 30 mg/mL had the highest level of MDA. A significant rise in GSH level and activity of SOD were observed. The result obtained indicated that 1 has the potential to prevent oxidative testicular toxicity, as evidenced by its capacity to control nucleotide hydrolysis and reduce oxidative stress. Overall, the results of this experimental study point to some possible uses of 3-(4-methoxyphenyl) acrylic acid (1) in the prevention of oxidative testicular dysfunction. Therefore, 3-(4-methoxyphenyl) acrylic acid (1) would be a good product in developing a medication to alleviate male infertility.


Corresponding authors: Akingbolabo Daniel Ogunlakin, Bowen University SDG 03 (Good Health and Wellbeing Research Cluster), Iwo, Nigeria; and Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria, Phone: +2347037883049, e-mail: ; and Enitan O. Adesanya, Department of Biochemistry, Olabisi Onabanjo University, Ago-Iwoye, Nigeria, Phone: +2348055123608, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).
  1. Research funding: This research received no external funding.

References

[1] S. Dutta, P. Sengupta, P. Slama, S. Roychoudhury. Int. J. Mol. Sci. 22, 10043 (2021), https://doi.org/10.3390/ijms221810043.Search in Google Scholar PubMed PubMed Central

[2] P. Sengupta, K. Bhattacharya, S. Dutta. Asian Pac. J. Reprod. 8, 220–226 (2019), https://doi.org/10.4103/2305-0500.268143.Search in Google Scholar

[3] P. Sengupta, S. Dutta, U. D’Souza, A. Alahmar. Chem. Biol. Lett. 7, 75–84 (2020).Search in Google Scholar

[4] J. A. Allen, T. Diemer, P. Janus, K. H. Hales, D. B. Hales. 2004. Endocrine. 25, 265–275.10.1385/ENDO:25:3:265Search in Google Scholar PubMed

[5] M. K. P. Selvam, P. Sengupta, A. Agarwal. Sperm DNA fragmentation and male infertility. In Genetics of Male Infertility, pp. 155–172, Springer, Berlin/Heidelberg, Germany (2020).10.1007/978-3-030-37972-8_9Search in Google Scholar

[6] O. L. Erukainure, O. M. Ijomone, O. A. Oyebode, C. I. Chukwuma, M. Aschner, M. S. Islam. Food Chem. Toxicol. 127, 206–217 (2019), https://doi.org/10.1016/j.fct.2019.03.044.Search in Google Scholar PubMed

[7] A. Agarwal, L. H. Sekhon. Hum. Fertil. 13, 217–225 (2010), https://doi.org/10.3109/14647273.2010.532279.Search in Google Scholar PubMed

[8] P. Sharma, P. Kaur, P. Ghanghas, J. Kaur, N. Kaushal. Reprod. Toxicol. 96, 349–358 (2020), https://doi.org/10.1016/j.reprotox.2020.08.005.Search in Google Scholar PubMed

[9] M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, J. Telser. Int. J. Biochem. Cell Biol. 39, 44–84 (2007), https://doi.org/10.1016/j.biocel.2006.07.001.Search in Google Scholar PubMed

[10] R. Henkel, I. S. Sandhu, A. Agarwal. Andrologia 51, e13162 (2019), https://doi.org/10.1111/and.13162.Search in Google Scholar PubMed

[11] M. Rychlicka, A. Rot, A. Gliszczyńska. Foods 10, 1417 (2021), https://doi.org/10.3390/foods10061417.Search in Google Scholar PubMed PubMed Central

[12] S. Tachai, N. Nuntawong. Nat. Prod. Res. 30, 2215–2219 (2016), https://doi.org/10.1080/14786419.2016.1146884.Search in Google Scholar PubMed

[13] N. H. Gay, K. Phopin, W. Suwanjang, N. Songtawee, W. Ruankham, P. Wongchitrat, S. Prachayasittikul, V. Prachayasittikul. Neurochem. Res. 43, 619–636 (2018), https://doi.org/10.1007/s11064-017-2463-x.Search in Google Scholar PubMed

[14] A. D. Ogunlakin. Isolation of bioactive compounds from selected Nigerian medicinal plants for management of letrozole-induced polycystic ovarian syndrome in rats. Doctoral dissertation. University of Ibadan, Ibadan, Nigeria (2021).Search in Google Scholar

[15] W. Brand-Williams, M. E. Cuvelier, C. L. Berset. LWT - Food Sci. Technol. 28, 25–30 (1995), https://doi.org/10.1016/S0023-6438(95)80008-5.Search in Google Scholar

[16] Z. P. Ruan, L. L. Zhang, Y. M. Lin. Molecules 13, 2545–2556 (2008), https://doi.org/10.3390/molecules13102545.Search in Google Scholar PubMed PubMed Central

[17] I. F. Benzie, J. J. Strain. Anal. Biochem. 239, 70–76 (1996), https://doi.org/10.1006/abio.1996.0292.Search in Google Scholar PubMed

[18] A. B. Ojo, G. A. Gyebi, A. Alabi, M. Iyobhebhe, A. B. Kayode, C. O. Nwonuma, O. A. Ojo. J. Mol. Struct. 1268, 133675 (2022), https://doi.org/10.1016/j.molstruc.2022.133675.Search in Google Scholar

[19] F. A. Gad, S. M. Farouk, M. A. Emam. Environ. Sci. Pollut. Res. 28, 2379–2390 (2021), https://doi.org/10.1007/s11356-020-10674-7.Search in Google Scholar PubMed

[20] O. L. Erukainure, O. Atolani, P. Banerjee, R. Abel, O. J. Pooe, O. S. Adeyemi, R. Preissner, C. I. Chukwuma, N. A. Koorbanally, M. Isla. Amino Acids 53, 359–380 (2021), https://doi.org/10.1007/s00726-021-02954-4.Search in Google Scholar PubMed

[21] S. E. Owumi, C. E. Irozuru, U. O. Arunsi, H. O. Faleke, A. K. Oyelere. J. Food Biochem. 46, e14090 (2022), https://doi.org/10.1111/jfbc.14090.Search in Google Scholar PubMed

[22] J. J. Pignatello, E. Oliveros, A. MacKay. Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006), https://doi.org/10.1080/10643380500326564.Search in Google Scholar

[23] S. C. Pereira, P. F. Oliveira, S. R. Oliveira, M. D. Pereira, M. G. Alves. Antioxidants 10, 1365 (2021), https://doi.org/10.3390/antiox10091365.Search in Google Scholar PubMed PubMed Central

[24] Y. Liu, Z. Xiao, F. Chen, L. Yue, H. Zou, J. Lyu. Sci. Total Environ. 780, 146578 (2021), https://doi.org/10.1016/j.scitotenv.2021.146578.Search in Google Scholar PubMed

[25] A. Skumar, S. S. S. Abuthahir, H. Y. Aboul-Enein. Pharmacia 69, 447–451 (2022), https://doi.org/10.3897/pharmacia.69.e77829.Search in Google Scholar

[26] D. Huang, B. Ou, R. L. Prior. J. Agric. Food Chem. 53, 1841–1856 (2005), https://doi.org/10.1021/jf030723c.Search in Google Scholar PubMed

[27] L. Aksoy, E. Kolay, Y. Ağılönü, Z. Aslan, M. Kargıoğlu. Saudi J. Biol. Sci. 20, 235–239 (2013), https://doi.org/10.1016/j.sjbs.2013.02.003.Search in Google Scholar PubMed PubMed Central

[28] M. M. Rahman, M. B. Islam, M. Biswas, A. H. Khurshid Alam. BMC Res. Notes. 8, 621 (2015). https://doi.org/10.1186/s13104-015-1618-6.Search in Google Scholar PubMed PubMed Central

[29] S. Kalia, V. K. Bharti, A. Giri, B. Kumar, A. Arora, S. S. Balaje. Sci. Rep. 8, 5954 (2018), https://doi.org/10.1038/s41598-018-24409-9.Search in Google Scholar PubMed PubMed Central

[30] B. O. Ajiboye, B. E. Oyinloye, O. A Ojo, O. E. Lawal, Y. A. Jokomba, B. A. Balogun, A. O. Adeoye, O. R. Ajuwon. Bioinform. Biol. Insights 16, 1–17 (2022), https://doi.org/10.1177/11779322221115546.Search in Google Scholar PubMed PubMed Central

[31] K. A. Olofinsan, V. F. Salau, O.L. Erukainure, M.S. Islam. Andrologia 53, e14179 (2021), https://doi.org/10.1111/and.14179.Search in Google Scholar PubMed

[32] V. F. Salau, O. L. Erukainure, C. U. Ibeji, T. A. Olasehinde, N. A. Koorbanally, M. S. Islam. Neurotox. Res. 37, 944–955 (2020), https://doi.org/10.1007/s12640-019-00099-7.Search in Google Scholar PubMed

[33] R. M. Han, J. P. Zhang, L. H. Skibsted. Molecules 17, 2140–2160 (2012), https://doi.org/10.3390/molecules17022140.Search in Google Scholar PubMed PubMed Central

[34] S. Liga, C. Paul, F. Péter. Plants 12, 2732 (2023), https://doi.org/10.3390/plants12142732.Search in Google Scholar PubMed PubMed Central

[35] C. Liang, X. Zhang, M. Yang, X. Dong. Adv. Matter. 31, e1904197 (2019), https://doi.org/10.1002/adma.201904197.Search in Google Scholar PubMed

[36] O. A. Ojo, J. C. Amanze, A. I. Oni, S. Grant, M. Iyobhebhe, T. C. Elebiyo, D. Rotimi, N. T. Asogwa, B. E. Oyinloye, B. O. Ajiboye. Sci. Rep. 12, 1–18 (2022), https://doi.org/10.1038/s41598-022-07015-8.Search in Google Scholar PubMed PubMed Central

[37] S. K. Shin, H. W. Cho, S. E. Song, D. K. Song. Pflügers Arch. - Eur. J. Physiol. 470, 1721–1737 (2018), https://doi.org/10.1007/S00424-018-2195-Z.470122018.Search in Google Scholar

[38] Y. Ho, Y. Xiong, W. Ma, A. Spector, D. S. Ho. J. Biol. Chem. 279, 32804–32812 (2004).10.1074/jbc.M404800200Search in Google Scholar PubMed

[39] B. O. Ajiboye, B. E. Oyinloye, P. E. Agboinghale, O. A. Ojo. J. Food Biochem. 43, e13065 (2019), https://doi.org/10.1111/jfbc.13065.Search in Google Scholar PubMed

[40] O. A. Ojo, A. I. Oni, S. Grant, J. Amanze, A. B. Ojo, O. A. Taiwo, R. F. Maimako, I. O. Evbuomwan, M. Iyobhebhe, C. O. Nwonuma. Front. Pharmacol. 13, 845196 (2022), https://doi.org/10.3389/fphar.2022.845196.Search in Google Scholar PubMed PubMed Central

[41] A. J. Akinyemi, G. R. Thomé, V. M. Morsch, N. B. Bottari, J. Baldissarelli, L. S. de Oliveira, J. F. Goularte, A. Belló-Klein, G. Oboh, M. R. C. Schetinger. Phytother. Res. 30, 1156–1163 (2016), https://doi.org/10.1002/ptr.5621.Search in Google Scholar PubMed

[42] S. Akomolafe, A. Akinyemi, O. Ogunsuyi, S. Oyeleye, G. Oboh, O. Adeoyo, Y. Allismith. Neuro.Toxicol. 62, 6–13 (2017), https://doi.org/10.1016/j.neuro.2017.04.008.Search in Google Scholar PubMed

[43] O. L. Erukainure, V. F. Salau, A. B. Oyenihi, N. Mshicileli, M. S. Islam. J. Food Biochem. 44, 1–13 (2020), https://doi.org/10.1111/jfbc.13315.Search in Google Scholar PubMed

[44] V. F. Salau, O. L. Erukainure, C. U. Ibeji, T. A. Olasehinde, N. A. Koorbanally, M. S. Islam. Neurotox. Res. 37, 944–955 (2019), https://doi.org/10.1007/s12640-019-00099-7.Search in Google Scholar PubMed

[45] A. Yimer, S. F. Forsido, G. Addis, A. Ayelign. Heliyon 9, e15331 (2023), https://doi.org/10.1016/j.heliyon.2023.e15331.Search in Google Scholar PubMed PubMed Central

[46] W. Wätjen, G. Michels, B. Steffan, P. Niering, Y. Chovolou, A. Kampkötter, Q. H. Tran-Thi, P. Proksch, R. Kahl. J. Nutr. 135, 525–531 (2005), https://doi.org/10.1093/jn/135.3.525.Search in Google Scholar PubMed

[47] F. Farhadi, B. Khameneh, M. Iranshahi, M. Iranshahy. Phytother. Res. 33, 13–40 (2019), https://doi.org/10.1002/ptr.6208.Search in Google Scholar PubMed

[48] T. B. Ribeiro, A. Melo, A. A. Vilas-Boas, M. Pintado. Flavonoids. In Natural Secondary Metabolites: From Nature, Through Science, to Industry, Vol. 22, pp. 73–105, Springer International Publishing, Cham (2023).10.1007/978-3-031-18587-8_4Search in Google Scholar

Published Online: 2024-03-25
Published in Print: 2024-05-27

© 2024 IUPAC & De Gruyter

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1201/html
Scroll to top button