Startseite Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Decarbonizing our environment via the promotion of biomass methanation in developing nations: a waste management tool

  • Chidiebere Millicent Igwebuike ORCID logo EMAIL logo und Toyese Oyegoke ORCID logo
Veröffentlicht/Copyright: 12. März 2024

Abstract

For a long time, fossil fuel has been a part of our everyday lives and has constantly led to the emission of carbon dioxide (CO2) into the environment. The release of methane (CH4) into our surroundings can be caused by the decomposition of organic wastes produced by our daily activities; CH4 produced by human activity is responsible for at least 25 % of global warming. CH4 is a known potent greenhouse gas that can trap about 35 times more heat than CO2. These greenhouse gases play a role in climate change and global warming. It, therefore, becomes important to explore measures for decarbonizing our environment. Biomethane production using our generated waste is a promising decarbonization approach with significant potential for mitigating greenhouse gas emissions. This paper overviews potential biomass methanation feedstocks and investigates several technologies, such as anaerobic digestion, combined pyrolysis and methanation, and combined gasification and methanation. SWOT analysis of waste conversion to biomethane was conducted, and important points related to the scaling-up of biomethane production processes were outlined. Also, insights into prospects for promoting biomass methanation deployment were provided. In conclusion, biomass methanation has great potential for producing sustainable energy. Hence, collaboration between industrialists, researchers, government agencies, and stakeholders including an understanding of the financial investments, return on investments, or potential subsidies and incentives could enhance the practicality of the proposed solution. Research and development should be continuously carried out as they are necessary to scale up and promote the technology. Also, there should be technical training for stakeholders as it is essential for the smooth development of the sector.


Corresponding author: Chidiebere Millicent Igwebuike, IMT Atlantique, GEPEA, UMR CNRS 6144, 4 rue Alfred Kastler, F-44000 Nantes, France, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).

Acknowledgment

The authors acknowledge the support of the Pencil Team and affiliate institutions.

References

[1] S. Siebert, J. Gilbert, M. Ricci-Jürgensen. ECN 1–3 (2019), https://www.compostnetwork.info/policy/biowaste-in-europe/#:∼:text=Across the European Union%2C somewhere,high-quality compost and digestate.Suche in Google Scholar

[2] C. M. Igwebuike, S. Awad, Y. A. Olanrewaju, Y. Andrès. Int. J. Smart Grid Clean Energy, 150 (2021), https://doi.org/10.12720/sgce.10.2.150-156.Suche in Google Scholar

[3] Methane: A Crucial Opportunity in the Climate Fight, Environmental Defense Fund – EDF, https://www.edf.org/climate/methane-crucial-opportunity-climate-fight (accessed Jun 13, 2023).Suche in Google Scholar

[4] Mapping Methane Emissions from Fossil Fuel Exploitation, NASA – Earth Observatory, https://earthobservatory.nasa.gov/images/149374/mapping-methane-emissions-from-fossil-fuel-exploitation (accessed Jun 03, 2023).Suche in Google Scholar

[5] Biogas: Converting Waste to Energy, Environmental and Energy Study Institute, https://www.eesi.org/files/FactSheet_Biogas_2017.09.pdf (accessed Apr 22, 2022).Suche in Google Scholar

[6] N. Scarlat, J. F. Dallemand, F. Fahl. Renew. Energy 129, 457 (2018), https://doi.org/10.1016/j.renene.2018.03.006.Suche in Google Scholar

[7] Developing sustainable biogas in the EU (2019).Suche in Google Scholar

[8] Y. S. Ahou, M. N. A. Christami, S. Awad, C. R. Priadi, L. Baba-Moussa, S. S. Moersidik Wet oxidation pretreatment effect for enhancing bioethanol production from cassava peels, water hyacinth, and green algae (Ulva). In: AIP Conference Proceedings, (September), p. 030039 (2020). https://doi.org/10.1063/5.0013560.Suche in Google Scholar

[9] J. Hughes. The Rapid Development of AD Represents ‘Enlightened Self-Interest’ on Climate Change and Coronaviruses, World Biogas Association, https://www.worldbiogasassociation.org/the-rapid-development-of-ad-represents-enlightened-self-interest-on-climate-change-and-coronaviruses/ (accessed Apr 23, 2022).Suche in Google Scholar

[10] The Paris Agreement, United Nations Framework Convention on Climate Change (UNFCCC), https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed Apr 23, 2022).Suche in Google Scholar

[11] N. Bolan, M. Kumar, E. Singh, A. Kumar, L. Singh, S. Kumar, S. Keerthanan, S. A. Hoang, A. El-Naggar, M. Vithanage, B. Sarkar, H. Wijesekara, S. Diyabalanage, P. Sooriyakumar, A. Vinu, H. Wang, M. B. Kirkham, S. M. Shaheen, J. Rinklebe, K. H. M. Siddique. Environ. Int. 158, 2022 (2022), https://doi.org/10.1016/j.envint.2021.106908.Suche in Google Scholar PubMed

[12] E. Singh, A. Kumar, R. Mishra, S. Kumar. Chemosphere 288, 132451 (2022), https://doi.org/10.1016/j.chemosphere.2021.132451.Suche in Google Scholar PubMed PubMed Central

[13] T. Oyegoke. Bulg. Chem. Commun. 54, 29 (2022), https://doi.org/10.34049/bcc.54.1.5458.Suche in Google Scholar

[14] C. W. Ann. Biogas – Feedstocks, Biogas A Renewable Biofuel, Gainesville, FL (2019), https://biogas.ifas.ufl.edu/feedstocks.asp (accessed Apr 23, 2023).Suche in Google Scholar

[15] F. A. Aisien, E. T. Aisien. Detritus Multidis. J. Waste Resource Residues 10, 108 (2020), https://doi.org/10.31025/2611-4135/2020.13910.Suche in Google Scholar

[16] T. Oyegoke, E. J. Oguche. Prospects of green fuels to the management of wastes in Nigeria. in International Conference of The Nigerian Institution of Professional Engineers and Scientists, C. K.-E. Collins (Ed.), pp. 29–35, NIPES, Benin (2021), https://nipesjournals.org.ng/wp-content/uploads/2022/03/NIPES-Book-of-Proceedings-October-2021.pdf (accessed Apr 23, 2023).Suche in Google Scholar

[17] Outlook for Biogas and Biomethane. p. 93, IEA (2020), https://iea.blob.core.windows.net/assets/03aeb10c-c38c-4d10-bcec-de92e9ab815f/Outlook_for_biogas_and_biomethane.pdf.Suche in Google Scholar

[18] IEA. An Introduction to Biogas and Biomethane – Outlook for Biogas and Biomethane: Prospects for Organic Growth – Analysis – IEA, IEA, Paris, FR (2020), https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane (accessed Apr 23, 2023).Suche in Google Scholar

[19] M. K. Dana, F. Louise. Feedstocks for Biogas – Farm Energy, Farm Energy (2019), https://farm-energy.extension.org/feedstocks-for-biogas/ (accessed Apr 23, 2023).Suche in Google Scholar

[20] S. O. Dahunsi, U. S. Oranusi. Brit. Biotechnol. J. 3, 485 (2013), https://doi.org/10.9734/bbj/2013/4476.Suche in Google Scholar

[21] A. O. Chinwendu, B. C. Akin-Osanaiye, E. B. Asikong, U. O. Edet. World J. Adv. Res. Rev. 1, 052 (2019), https://doi.org/10.30574/WJARR.2019.1.3.0026.Suche in Google Scholar

[22] S. J. Ojolo, S. A. Oke, K. Animasahun, B. K. Adesuyi. J. Environ. Health. Sci. Eng. 4, 223 (2007).Suche in Google Scholar

[23] Budiyono, A. D. Primaloka, L. Ardhannari, H. H. A. Matin, S. Sumardiono. MATEC Web Conf. 156, 03052 (2018), https://doi.org/10.1051/MATECCONF/201815603052.Suche in Google Scholar

[24] C. Sawatdeenarunat, C. Wangnai, W. Songkasiri, P. Panichnumsin, K. Saritpongteeraka, P. Boonsawang, S. K. Khanal, S. Chaiprapat. Biogas production from industrial effluents, in Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, pp. 779–816, Elsevier, Amsterdam (2019), https://doi.org/10.1016/B978-0-12-816856-1.00032-4.Suche in Google Scholar

[25] U. Hayatu Sidik, F. Bin Razali, S. Rafidah Wan Alwi, F. Maigari, J. Bahru, J. Darul Ta. Nig. J. Basic Appl. Sci. 21, 79 (2013), https://doi.org/10.4314/njbas.v21i1.12.Suche in Google Scholar

[26] J. Birman, J. Burdloff, H. de Peufeilhoux, G. Erbs, M. Feniou, P.-L. Lucille. Engie 1–42 (2021), https://www.engie.com/sites/default/files/assets/documents/2021-07/ENGIE_20210618_Biogas_potential_and_costs_in_2050_report_1.pdf.Suche in Google Scholar

[27] K. Moustakas, D. Sotiropoulos, S. Vakalis. Waste Manage. Res. 39, 438 (2021), https://doi.org/10.1177/0734242X20970607.Suche in Google Scholar PubMed

[28] O. C. Ozor, M. V. Agah, K. I. Ogbu, A. U. Nnachi, O. E. Udu-Ibiam, M. M. Agwu. Int. J. Sci. Technol. Res. 3, 237 (2014).Suche in Google Scholar

[29] T. Oyegoke, A. Folake Oyegoke, O. O. Fasanya, A.-A. Gambo Ibrahim. State of agro-wastes management in Nigeria: Status, Implications, and way Forward. in Waste Recovery and Management, pp. 241–272, CRC Press, Boca Raton (2023).10.1201/9781003359784-14Suche in Google Scholar

[30] PG&E Gas R&D and Innovation Whitepaper. in Conversion and Processing of Biogas and Syngas, pp. 1–22, Pacific Gas and Electric Company, California, USA (2018), https://www.pge.com/pge_global/common/pdfs/for-our-business-partners/interconnection-renewables/interconnections-renewables/Whitepaper_Conversion.pdf.Suche in Google Scholar

[31] Biomass Explained – Landfill Gas and Biogas, U.S. Energy Information Administration (EIA), https://www.eia.gov/energyexplained/biomass/landfill-gas-and-biogas.php (accessed Apr 22, 2023).Suche in Google Scholar

[32] Market state and trends in renewable and low-carbon gases in Europe (2021). https://gasforclimate2050.eu/wp-content/uploads/2021/12/Gas-for-Climate-Market-State-and-Trends-report-2021.pdf.Suche in Google Scholar

[33] M. M. Uddin, M. M. Wright. Phys. Sci. Rev. 8, 2819 (2022), https://doi.org/10.1515/psr-2021-0068.Suche in Google Scholar

[34] D. P. Van, T. Fujiwara, B. L. Tho, P. P. S. Toan, G. H. Minh. Environ. Eng. Res. 25(1), 1 (2020), https://doi.org/10.4491/eer.2018.334.Suche in Google Scholar

[35] The Pennsylvania State University. EGEE 439: alternative fuels from biomass sources, https://www.e-education.psu.edu/egee439/node/727 (accessed May 31, 2023).Suche in Google Scholar

[36] M. Santamaría-Fernández, B. Molinuevo-Salces, M. Lübeck, H. Uellendahl. Renew. Energy 129, 769 (2018), https://doi.org/10.1016/J.RENENE.2017.03.012.Suche in Google Scholar

[37] W. M. Kitessa, F. Fufa, D. Abera. Int. J. Chem. Eng. 2022, 3560068 (2022), https://doi.org/10.1155/2022/3560068.Suche in Google Scholar

[38] R. Sequeda Barros, M. Durán Contreras, F. Romani Morris, M. Vanegas Chamorro, A. Albis Arrieta. Heliyon 9(3), e14317 (2023), https://doi.org/10.1016/j.heliyon.2023.e14317.Suche in Google Scholar PubMed PubMed Central

[39] H. Ünyay, F. Yılmaz, İ. A. Başar, N. Altınay Perendeci, I. Çoban, E. Şahinkaya. Biomass Bioenergy 156(November 2021), 1 (2022), https://doi.org/10.1016/j.biombioe.2021.106306.Suche in Google Scholar

[40] S. Sathish, R. Balaji, S. M. Shafee, C. Mageswaran. AIP Conf. Proc. 2225(November) (2020), https://doi.org/10.1063/5.0006030.Suche in Google Scholar

[41] A. Janejadkarn, O. Chavalparit. Adv. Mater. Res. 856, 327 (2014), https://doi.org/10.4028/www.scientific.net/AMR.856.327.Suche in Google Scholar

[42] H. L. Lord, E. A. Pfannkoch. Sample preparation automation for GC injection, in Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists, pp. 597–612, Elsevier, Amsterdam (2012), https://doi.org/10.1016/B978-0-12-381373-2.00061-2.Suche in Google Scholar

[43] E. Stauffer, J. A. Dolan, R. Newman. Chemistry and physics of fire and liquid fuels, in Fire Debris Analysis, pp. 85–129, Elsevier, Amsterdam (2008), https://doi.org/10.1016/B978-012663971-1.50008-7.Suche in Google Scholar

[44] X. Zhao, K. Xu, J. Wang, Z. Wang, R. Pan, Q. Wang, S. Li, S. Kumar, Z. Zhang, R. Li. Bioresour. Technol. 357(April), 127350 (2022), https://doi.org/10.1016/j.biortech.2022.127350.Suche in Google Scholar PubMed

[45] Y. L. Ding, H. Q. Wang, M. Xiang, P. Yu, R. Q. Li, Q. P. Ke. Front. Chem. 8(Sep. 2020), 790, https://doi.org/10.3389/FCHEM.2020.00790/BIBTEX.Suche in Google Scholar

[46] S. Thangalazhy-Gopakumar, S. Adhikari, R. B. Gupta. Energy Fuels 26(8), 5300 (2012), https://doi.org/10.1021/EF3008213.Suche in Google Scholar

[47] P. Girods, A. Dufour, Y. Rogaume, C. Rogaume, A. Zoulalian. J. Anal. Appl. Pyrolysis 85(1–2), 171 (2009), https://doi.org/10.1016/J.JAAP.2008.11.014.Suche in Google Scholar

[48] S. Papari, K. Hawboldt, R. Helleur. Ind. Eng. Chem. Res. 54(2), 605 (2015), https://doi.org/10.1021/IE5039456.Suche in Google Scholar

[49] M. B. Görling, E. A. Moghaddam, S. Grönkvist, P. -A. Hansson, M. Larsson, Å. Nordberg, M. Westermark. Pre-study of biogas production from low-temperature production of biogas: Report from an f3 RaD project (2013), https://doi.org/10.13140/2.1.2061.6480.Suche in Google Scholar

[50] B. K. Prajapti, S. Gautam, A. Anand, P. Singh. Clean Technol. Environ. Policy 24, 1375 (2022), https://doi.org/10.21203/RS.3.RS-471934/V1.Suche in Google Scholar

[51] X. Wei, D. Ming-yue, T. U. Jun-ling, C. Lun-gang, W. Tie-jun, Z. Qi, M. A. Long-long. J. Fuel Chem. Technol. 42(08), 958–964 (2014), http://rlhxxb.sxicc.ac.cn/en/article/id/18471 (accessed 24 Apr 2023).Suche in Google Scholar

[52] M. M. Jaffar, M. A. Nahil, P. T. Williams. Energy Fuels 33(8), 7443 (2019), https://doi.org/10.1021/ACS.ENERGYFUELS.9B01524/ASSET/IMAGES/MEDIUM/EF-2019-015248_0015.GIF.Suche in Google Scholar

[53] R. Razzaq, H. Zhu, L. Jiang, U. Muhammad, C. Li, S. Zhang. Ind. Eng. Chem. Res. 52(6), 2247 (2013), https://doi.org/10.1021/IE301399Z.Suche in Google Scholar

[54] L. Wang, S. Shen, S. Yang, X. Shi. Int. J. Low-Carbon Technol. 5(4), 182 (2010), https://doi.org/10.1093/IJLCT/CTQ018.Suche in Google Scholar

[55] T. P. Mai, D. Q. Nguyen. Gasification of biomass, in Biotechnological Applications of Biomass, pp. 85–129, IntechOpen, London, UK (2021), https://doi.org/10.5772/intechopen.93954.Suche in Google Scholar

[56] N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane. Energy Procedia 36, 596 (2013), https://doi.org/10.1016/J.EGYPRO.2013.07.068.Suche in Google Scholar

[57] M. Görling, M. Larsson, P. Alvfors. Appl. Energy 112, 440 (2013), https://doi.org/10.1016/j.apenergy.2013.01.002.Suche in Google Scholar

[58] M. Livi, F. Trifirò. Ann. Chim. Sci. Mater. 46(4), 169 (2022), https://doi.org/10.18280/ACSM.460401.Suche in Google Scholar

[59] ECN. Gasification plant soon to be built in Alkmaar, The Netherlands | European biogas association, EBA report, https://www.europeanbiogas.eu/gasification-plant-soon-to-be-built-in-alkmaar-the-netherlands/ (accessed Apr 24, 2023).Suche in Google Scholar

[60] Goteborg Energi. Läs om anläggningen GoBiGas, GÖTEBORG ENERGI Report, https://www.goteborgenergi.se/om-oss/vad-vi-gor/forskning-utveckling/gobigas (accessed Apr 24, 2023).Suche in Google Scholar

[61] Y. Xiao, X. Ye, Y. Wang, L. Wang. Catalysts 13(4), 771 (2023), https://doi.org/10.3390/CATAL13040771.Suche in Google Scholar

[62] J. Gao, Q. Liu, F. Gu, B. Liu, Z. Zhong, F. Su. RSC Adv. 5(29), 22759 (2015), https://doi.org/10.1039/C4RA16114A.Suche in Google Scholar

[63] M. Shahbaz, S. Yusup, A. Pratama, A. Inayat, D. O. Patrick, M. Ammar. Procedia Eng. 148, 409 (2016), https://doi.org/10.1016/J.PROENG.2016.06.432.Suche in Google Scholar

[64] L. K. Mudge, E. G. Baker, D. H. Mitchell, M. D. Brown. J. Sol. Energy Eng. 107(1), 88 (1985), https://doi.org/10.1115/1.3267660.Suche in Google Scholar

[65] J. Zhang, G. Wang, S. Xu. Ind. Eng. Chem. Res. 57(32), 10905 (2018), https://doi.org/10.1021/ACS.IECR.8B02085/ASSET/IMAGES/MEDIUM/IE-2018-02085D_0011.GIF.Suche in Google Scholar

[66] W. Xing, Y. Liu, W. Zhang, Y. Sun, X. Kai, T. Yang. ACS Omega 5(44), 28597 (2020), https://doi.org/10.1021/ACSOMEGA.0C03536/ASSET/IMAGES/LARGE/AO0C03536_0015.JPEG.Suche in Google Scholar

[67] S. Bajohr. Power-to-Gas – The Methanation Plants, Karlsruhe Institue of Technology, https://www.elab2.kit.edu/english/power2gas.php (accessed Feb 08, 2024).Suche in Google Scholar

[68] O. Bedani. VESTA methanation for renewable natural gas production, Wood, https://www.woodplc.com/solutions/expertise/vesta-methanation (accessed Feb 08, 2024).Suche in Google Scholar

[69] L. Romano, F. Ruggeri. Energy Procedia 81, 249 (2015), https://doi.org/10.1016/j.egypro.2015.12.092.Suche in Google Scholar

[70] ENERGY innovation A BILLION years in the making, Electrochaea, https://www.electrochaea.com/technology/ (accessed Feb 08, 2024).Suche in Google Scholar

[71] H. Roberts, J. Bailey, M. Beschid. Baker Hughes invests in bio-methanation technology Company Electrochaea to Expand carbon utilization Portfolio with power-to-gas solution, Baker Hughes, https://investors.bakerhughes.com/news-releases/news-release-details/baker-hughes-invests-bio-methanation-technology-company (accessed Feb 08, 2024).Suche in Google Scholar

[72] Bracknell Forest Council. Anaerobic digestion feasibility study – Bracknell AD plant technical feasibility, Atkins, https://democratic.bracknell-forest.gov.uk/documents/s172426/220416Hayes-AppendixAFinal.pdf (accessed May 31, 2023).Suche in Google Scholar

[73] C. Gonzalez-Fernandez, S. Barreiro-Vescovo, I. De Godos, M. Fernandez, A. Zouhayr, M. Ballesteros. Biotechnol. Biofuels 11(1), 1 (2018), https://doi.org/10.1186/s13068-018-1188-7.Suche in Google Scholar PubMed PubMed Central

[74] E. López-Dávila, J Jiménez Hernández, LM López González, EL Barrera Cardoso, E Bravo Amarante, LM Contreras Velázquez, et al.. Cienc. Tecnol. Agropecu. 23(1) (2022), https://doi.org/10.21930/rcta.vol23_num1_art:1890.10.21930/rcta.vol23_num1_art:1890Suche in Google Scholar

[75] Y. Wu, X. Ye, Y. Wang, L. Wang. Catalysts 13(4), 771 (2023), https://doi.org/10.3390/catal13040771.Suche in Google Scholar

[76] T. J. Schildhauer, S. M. A. Biollaz. Chimia 69(10), 603–607 (2015), https://doi.org/10.2533/chimia.2015.603.Suche in Google Scholar PubMed

[77] A. Abraham, A. K. Mathew, H Park, O Choi, R Sindhu, B Parameswaran, A. Pandey, J.H. Park, B.-I. Sang. Bioresour. Technol. 301(December 2019), 122725 (2020), https://doi.org/10.1016/j.biortech.2019.122725.Suche in Google Scholar PubMed

[78] S. Kumar, T. C. D’Silva, R. Chandra, A. Malik, V. K. Vijay, A. Misra. Bioresour. Technol. Rep. 15(August), 100813 (2021), https://doi.org/10.1016/j.biteb.2021.100813.Suche in Google Scholar

[79] E. Martínez-Gutiérrez. 3 Biotech 8(5), 1 (2018), https://doi.org/10.1007/s13205-018-1257-4.Suche in Google Scholar PubMed PubMed Central

[80] K. Stangeland, D. Kalai, H. Li, Z. Yu. Energy Procedia 105(1876), 2022 (2017), https://doi.org/10.1016/j.egypro.2017.03.577.Suche in Google Scholar

[81] H. Li, D. Mehmood, E. Thorin, Z. Yu. Energy Procedia 105, 1172 (2017), https://doi.org/10.1016/j.egypro.2017.03.490.Suche in Google Scholar

[82] A. Beloborodko, F. Romagnoli, M. Rosa, C. Disanto, R. Salimbeni, E. N. Karlsen, M. Reime, T. Schwab, J. Mortensen, M. Ibarra, D. Blumberga, et al.. Energy Procedia 72, 163 (2015), https://doi.org/10.1016/j.egypro.2015.06.023.Suche in Google Scholar

[83] E. Imbert. Open Agric. 2(1), 195 (2017), https://doi.org/10.1515/opag-2017-0020.Suche in Google Scholar

[84] M. Obrecht, M. Denac. J. Energy Technol. 4(5), 11 (2011).Suche in Google Scholar

[85] C. M. Igwebuike. Clean Technol. Recycl. 3(2), 92 (2023), https://doi.org/10.3934/ctr.2023006.Suche in Google Scholar

[86] G. Schramm, Energy Policy 21 (7), 735 (1993), https://doi.org/10.1016/0301-4215(93)90144-5.Suche in Google Scholar

[87] UNCTAD. Over half of the people in least developed countries lack access to electricity | UNCTAD, Geneva, Switzerland (2017), https://unctad.org/topic/least-developed-countries/chart-july-2021 (accessed Apr 23, 2023).Suche in Google Scholar

[88] N. Mcculloch, D. Zileviciute. Is Electricity Supply a Binding Constraint to Economic Growth in Developing Countries? California (2017), http://www.escholarship.org/help_copyright.html#reuse (accessed Apr 23, 2023).Suche in Google Scholar

[89] A. Eberhard, G. Dyson, P. Uttamchandani. in Evidence Review Practical Thinking on Investing for Development. What is the Impact of Investing in Power?, CDC Group, UK (2020), https://assets.bii.co.uk/wp-content/uploads/2020/01/30151049/Whats-the-impact-of-investing-in-power.pdf.Suche in Google Scholar

[90] D. I. Omang, G. E. John, S. A. Inah, J. O. Bisong. Afr. Health Sci. 21(3), 1467 (2021), https://doi.org/10.4314/AHS.V21I3.58.Suche in Google Scholar

[91] W. Fadhullah, N. I. N. Imran, S. N. S. Ismail, M. H. Jaafar, H. Abdullah. BMC Public Health 22(1), 1 (2022), https://doi.org/10.1186/S12889-021-12274-7/TABLES/6.Suche in Google Scholar

[92] D. Skrzypczak, K. Trzaska, K. Mikula, F. Gil, G. Izydorczyk, M. Mironiuk, X. Polomska, K. Moustakas, A. Witek-Krowiak, K. Chojnacka. Renew. Energy 203, 506 (2023), https://doi.org/10.1016/J.RENENE.2022.12.080.Suche in Google Scholar

[93] M. L. Veroneze, D Schwantes, AC Gonçalves, A Richart, J Manfrin, A da Paz Schiller, T. B. Schuba. J. Clean Prod. 213, 176–184 (2019), https://doi.org/10.1016/J.JCLEPRO.2018.12.181.Suche in Google Scholar

[94] M. F. Othman, A. Adam, G. Najafi, R. Mamat. Renewable Sustain. Energy Rev. 80, 694 (2017), https://doi.org/10.1016/J.RSER.2017.05.140.Suche in Google Scholar

[95] E. Singh, R. Mishra, A. Kumar, S. K. Shukla, S. L. Lo, S. Kumar. Process Saf. Environ. Prot. 163(March), 585 (2022), https://doi.org/10.1016/j.psep.2022.05.056.Suche in Google Scholar

[96] A. Tripathi, A. Prakash, J. Prakash. Economics and market of wastes, in Emerging Trends to Approaching Zero Waste, pp. 319–338, Elsevier, Amsterdam (2022), https://doi.org/10.1016/B978-0-323-85403-0.00003-7.Suche in Google Scholar

[97] A. Periathamby. Municipal waste management. In Waste, pp. 109–125, Elsevier, Amsterdam (2011). https://doi.org/10.1016/B978-0-12-381475-3.10008-7.Suche in Google Scholar

[98] R. van Ree, E. de Jong. Task 42. In Biorefining in a Future BioEconomy, IEA Bioenergy, France (2019). https://www.ieabioenergy.com/wp-content/uploads/2019/11/IEA-Bioenergy_Task-42-Triennium-2016-2018-1.pdf.Suche in Google Scholar

[99] C. He, Y. Mu, X. Liu, Z. Yan, Z. Yue. Comprehens. Biotechnol. 3(August 2018), 110 (2019), https://doi.org/10.1016/B978-0-444-64046-8.00154-3.Suche in Google Scholar

[100] A. G. Satav, S. Kubade, C. Amrutkar, G. Arya, A. Pawar. Int. J. Interact. Des. Manuf. (IJIDeM) 17, 2789 (2023), https://doi.org/10.1007/s12008-023-01320-w.Suche in Google Scholar

[101] P. Ghosh, G. Shah, S. Sahota, L. Singh, V. K. Vijay. Biogas production from waste: technical overview, progress, and challenges, in Bioreactors, pp. 89–104, Elsevier, Amsterdam (2020), https://doi.org/10.1016/B978-0-12-821264-6.00007-3.Suche in Google Scholar

[102] Thailand. Technology Needs Assessments Report for Climate Change Mitigation Coordinated by National Science Technology and Innovation Policy Office (2012), https://tech-action.unepccc.org/wp-content/uploads/sites/2/2013/12/technologyneedsassessment-mitigation-thailand-13.pdf.Suche in Google Scholar

[103] R. González-Sánchez, S. Alonso-Muñoz, M. S. Medina-Salgado. Oper. Manage. Res. 16(0123456789), 1520 (2023), https://doi.org/10.1007/s12063-023-00373-0.Suche in Google Scholar

[104] R. Sindhu, M. Kuttiraja, P. Binod, R. K. Sukumaran, A. Pandey. Renew Energy 62, 362 (2014), https://doi.org/10.1016/j.renene.2013.07.041.Suche in Google Scholar

[105] Production of liquid biofuels. IEA-ETSAP and IRENA (2013). https://iea-etsap.org/E-TechDS/PDF/P10IR_Liq Biof_GS_Jan2013_final_GSOK.pdf.Suche in Google Scholar

[106] T. Oyegoke, E. E. Peter, C. M. Igwebuike, B. E. Jibril. Current opinion on the significance of promoting molecular modeling and simulation applications in Nigeria’s future experimental catalysis and reaction engineering studies, Bulg. Chem. Commun. 55, 32–39 (2023), https://doi.org/10.34049/bcc.55.1.5521.Suche in Google Scholar

[107] K. Hoyer, C. Hulteberg, M. Svensson, J. Jenberg, Ø. NØrregård. Biogas Upgrading – Technical Review (2016). https://energiforskmedia.blob.core.windows.net/media/22326/biogas-upgrading-technical-review-energiforskrapport-2016-275.Suche in Google Scholar

[108] K. Ley, J. Gaines, A. Ghatikar. The Nigerian Energy Sector – An Overview with a Special Emphasis on Renewable Energy, Energy Efficiency and Rural Electrification, p. 168, Internationale Zusammenarbeit (GIZ) GmbH (2015), https://www.gopa-intec.de/.Suche in Google Scholar

[109] A. Nwozor, G. Owoeye, O. Olowojolu, M. Ake, S. Adedire, O. Ogundele. IOP Conf. Ser. Earth Environ. Sci. 655(1), 012054 (2021), https://doi.org/10.1088/1755-1315/655/1/012054.Suche in Google Scholar

Published Online: 2024-03-12
Published in Print: 2024-05-27

© 2024 IUPAC & De Gruyter

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1109/html
Button zum nach oben scrollen