Startseite Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inkjet printed acrylate-urethane modified poly(3,4-ethylenedioxythiophene) flexible conductive films

  • Lucija Fiket , Marin Božičević , Patricia Žagar , Dražan Jozić und Zvonimir Katančić EMAIL logo
Veröffentlicht/Copyright: 15. April 2024

Abstract

Flexible electronics is a new generation of electronic devices in which electronic components are integrated into flexible substrates. It is used in the fabrication of displays, solar cells, integrated circuits, and increasingly in the fabrication of electronic skin (E-skin), which can mimic the properties of human skin by being able to follow skin movements and flexures without loss of mechanical and electrical properties. E-skin is suitable for integrating various sensors to monitor personal health. Conductive polymers are used in flexible electronics due to their electrical conductivity, low mass, and stability. However, their main disadvantage is their brittleness, which is why they don’t possess flexibility property without modification. Therefore, in this work, the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was used as the main chain and the side branches of poly(acrylate-urethane) (PAU) were grafted onto it by atom transfer radical polymerization (ATRP) onto it, obtaining the grafted copolymer PEDOT-g-PAU. In this way, the main chain of PEDOT retains the property of electrical conductivity without losing conjugation, while the side branches of PAU have the ability to crosslink non-covalently through hydrogen bonds with PAU side branches of adjacent polymer molecules due to the presence of oxygen in their structure. The presence of hydrogen bonds allows increasing the stretchability and flexibility of the material, and they also have the ability to spontaneously renew themselves when they break due to excessive stress. Three different synthesis conditions were used to obtain polymers of different structure, which were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and measurement of electrical conductivity with a four-point probe (4PP) method. The obtained graft copolymer was prepared in the form of ink and printed on a polyurethane (PU) substrate using inkjet technique. The conductivity of the printed layer, its elongation and adhesion were investigated, while possible delamination of the printed polymer layer was also monitored. The results showed that the PEDOT-g-PAU copolymer was successfully synthesized and inkjet printing on PU film was successful. The obtained material has satisfactory electrical and mechanical properties and could be used for the integration of fully functional biosensors with further optimization of the composition.


Corresponding author: Zvonimir Katančić, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, E-mail:
Article note: A collection of invited papers based on presentations at the International Polymer Characterization Forum POLY-CHAR 2023, held as an online meeting based in Auckland 22 January–26 January 2023.

Award Identifier / Grant number: UIP-2019-04-8304

References

[1] K. Chen, J. Pan, W. Yin, C. Ma, L. Wang. Chin. Chem. Lett. 34, 108226 (2023), https://doi.org/10.1016/j.cclet.2023.108226.Suche in Google Scholar

[2] D. L. Wen, D. H. Sun, P. Huang, W. Huang, M. Su, Y. Wang, M. D. Han, B. Kim, J. Brugger, H. X. Zhang, X. S. Zhang. Microsyst. Nanoeng. 7, 35 (2021), https://doi.org/10.1038/s41378-021-00261-2.Suche in Google Scholar PubMed PubMed Central

[3] K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu. NPJ Flex. Electron. 6, 1 (2022), https://doi.org/10.1038/s41528-022-00133-3.Suche in Google Scholar

[4] T. Seesaard, C. Wongchoosuk. Micromachines 14, 1638 (2023), https://doi.org/10.3390/mi14081638.Suche in Google Scholar PubMed PubMed Central

[5] R. K. Baruah, H. Yoo, E. K. Lee. Micromachines 14, 1131 (2023), https://doi.org/10.3390/mi14061131.Suche in Google Scholar PubMed PubMed Central

[6] D. Son, Z. Bao. ACS Nano 12, 11731 (2018), https://doi.org/10.1021/acsnano.8b07738.Suche in Google Scholar PubMed

[7] L. Li, L. Han, H. Hu, R. Zhang. Mater. Adv. 4, 726 (2022), https://doi.org/10.1039/d2ma00940d.Suche in Google Scholar

[8] Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao, S. Dong, L. Ma, C. Gao, Z. Wum. Adv. Sci. 7, 1902673, (2020). https://doi.org/10.1002/advs.201902673 Suche in Google Scholar PubMed PubMed Central

[9] P. Wang, M. Hu, H. Wang, Z. Chen, Y. Feng, J. Wang, W. Ling, Y. Huang. Adv. Sci. 7, 2001116 (2020), https://doi.org/10.1002/advs.202001116.Suche in Google Scholar PubMed PubMed Central

[10] I. A. Pavel, S. Lakard, B. Lakard. Chemosensors 10, 97 (2022), https://doi.org/10.3390/chemosensors10030097.Suche in Google Scholar

[11] L. A. Mercante, R. S. Andre, M. H. M. Facure, D. S. Correa, L. H. C. Mattoso. Chem. Eng. J. 465, 142847 (2023), https://doi.org/10.1016/j.cej.2023.142847.Suche in Google Scholar

[12] J. Ouyang. SmartMat 2, 263 (2021), https://doi.org/10.1002/smm2.1059.Suche in Google Scholar

[13] V. Van Tran, S. Lee, D. Lee, T. H. Le. Polymers 14, 3730 (2022), https://doi.org/10.3390/polym14183730.Suche in Google Scholar PubMed PubMed Central

[14] M. N. Gueye, A. Carella, J. Faure-Vincent, R. Demadrille, J. P. Simonato. Prog. Mater. Sci. 108, 100616 (2020), https://doi.org/10.1016/j.pmatsci.2019.100616.Suche in Google Scholar

[15] M. J. Donahue, A. Sanchez-Sanchez, S. Inal, J. Qu, R. M. Owens, D. Mecerreyes, G. G. Malliaras, D. C. Martin. Mater. Sci. Eng. R Rep. 140, 100546 (2020), https://doi.org/10.1016/j.mser.2020.100546.Suche in Google Scholar

[16] D. Mantione, I. del Agua, A. Sanchez-Sanchez, D. Mecerreyes. Polymers 9, 354 (2017), https://doi.org/10.3390/polym9080354.Suche in Google Scholar PubMed PubMed Central

[17] L. Miozzo, N. Battaglini, D. Braga, L. Kergoat, C. Suspène, A. Yassar. J. Polym. Sci. Part A Polym. Chem. 50, 534 (2012), https://doi.org/10.1002/pola.25062.Suche in Google Scholar

[18] G. B. Tseghai, D. A. Mengistie, B. Malengier, K. A. Fante, L. Van Langenhove. Sensors 20, 1881 (2020), https://doi.org/10.3390/s20071881.Suche in Google Scholar PubMed PubMed Central

[19] L. Fiket, M. Božičević, L. Brkić, P. Žagar, A. Horvat, Z. Katančić. Polymers 14, 2340 (2022), https://doi.org/10.3390/polym14122340.Suche in Google Scholar PubMed PubMed Central

[20] Y. Wang, Y. Z. Zhang, D. Dubbink, J. E. ten Elshof. Nano Energy 49, 481 (2018), https://doi.org/10.1016/j.nanoen.2018.05.002.Suche in Google Scholar

[21] L. Nayak, S. Mohanty, S. K. Nayak, A. Ramadoss. J. Mater. Chem. C 7, 8771 (2019), https://doi.org/10.1039/c9tc01630a.Suche in Google Scholar

[22] J. Wiklund, A. Karaoç, T. Palko, H. Yigitler, K. Ruttik, R. Jäntti, JJ. Paltakari. J. Manuf. Mater. Process. 5, 89 (2021), https://doi.org/10.3390/jmmp5030089.Suche in Google Scholar

[23] Z. P. Yin, Y. A. Huang, N. Bin Bu, X. M. Wang, Y. L. Xiong. Chin. Sci. Bull. 55, 3383 (2010), https://doi.org/10.1007/s11434-010-3251-y.Suche in Google Scholar

[24] K. Yan, J. Li, L. Pan, Y. Shi. APL Mater. 8, 120705 (2020), https://doi.org/10.1063/5.0031669.Suche in Google Scholar

[25] K. S. Kwon, M. K. Rahman, T. H. Phung, S. D. Hoath, S. Jeong, J. S. Kim. Flex. Print. Electron. 5, 043003 (2020), https://doi.org/10.1088/2058-8585/abc8ca.Suche in Google Scholar

[26] A. Bastola, Y. He, J. Im, G. Rivers, F. Wang, R. Worsley, J. S. Austin, O. Nelson-Dummett, R. D. Wildman, R. Hague, C. J. Tuck, L. Turyanska. Mater. Today Electron. 6, 100058 (2023), https://doi.org/10.1016/j.mtelec.2023.100058.Suche in Google Scholar

[27] Z. Zhou, H. Zhang, J. Liu, W. Huang. Giant 6, 100051 (2021), https://doi.org/10.1016/j.giant.2021.100051.Suche in Google Scholar

[28] M. Gao, L. Li, Y. Song. J. Mater. Chem. C 5, 2971 (2017), https://doi.org/10.1039/c7tc00038c.Suche in Google Scholar

[29] M. Raić, D. Sačer, M. Kraljić Roković. Chem. Biochem. Eng. Q. 33, 385 (2019), https://doi.org/10.15255/CABEQ.2019.1609.Suche in Google Scholar

[30] P. Baek, N. Aydemir, Y. An, E. W. C. Chan, A. Sokolova, A. Nelson, J. P. Mata, D. McGillivray, D. Barker, J. Travas-Sejdic. Chem. Mater. 29, 8850 (2017), https://doi.org/10.1021/acs.chemmater.7b03291.Suche in Google Scholar

[31] E. Tomšík, I. Ivanko, J. Svoboda, I. Šeděnková, A. Zhigunov, J. Hromádková, J. Pánek, M. Lukešová, N. Velychkivska, L. Janisová. Macromol. Chem. Phys. 221, 200219 (2020), https://doi.org/10.1002/macp.202000219.Suche in Google Scholar

[32] Q. Zhao, R. Jamal, L. Zhang, M. Wang, T. Abdiryim. Nanoscale Res. Lett. 9, 557 (2014), https://doi.org/10.1186/1556-276X-9-557.Suche in Google Scholar PubMed PubMed Central

[33] J. Seon, E. S. Jang, J. H. Song, S. Choi, S. B. Khan, H. Han, J. App. Polym. Sci. 118, 2454 (2010), https://doi.org/10.1002/app.32344 Suche in Google Scholar

[34] M. Staszczak, M. Nabavian Kalat, K. M. Golasiński, L. Urbański, K. Takeda, R. Matsui, E. A. Pieczyska. Polymers 14, 4775 (2022), https://doi.org/10.3390/polym14214775.Suche in Google Scholar PubMed PubMed Central

[35] Z. Katančić, I. Gavran, J. Smolković, Z. Hrnjak-Murgić. J. Appl. Pol. Sci. 135, 46316 (2018), https://doi.org/10.1002/app.46316.Suche in Google Scholar

[36] H. Zhang, H. Pang, L. Zhang, X. Chen, B. Liao. J. Polym. Environ. 21, 329 (2013), https://doi.org/10.1007/s10924-012-0542-2.Suche in Google Scholar

[37] G. P Bates, V. S. Miller. J. Occup. Med. Toxicol. 3, 4 (2008); https://doi.org/10.1186/1745-6673-3-4 Suche in Google Scholar PubMed PubMed Central

[38] T. Kelly, B. Ghadi, S. Berg, H. Ardebili. Sci. Rep. 6, 20128 (2016), https://doi.org/10.1038/srep20128.Suche in Google Scholar PubMed PubMed Central

[39] Y. Ding, W. Xu, W. Wang, H. Fong, Z. Zhu. ACS Appl. Mater. Interfaces 9, 30014 (2017), https://doi.org/10.1021/acsami.7b06726.Suche in Google Scholar PubMed

[40] P. J. Taroni, G. Santagiuliana, K. Wan, P. Calado, M. Qiu, H. Zhang, N. M. Pugno, M. Palma, N. Stingelin-Stutzman, M. Heeney. Adv. Funct. Mater. 28, 1704285 (2018), https://doi.org/10.1002/adfm.201704285.Suche in Google Scholar

Published Online: 2024-04-15
Published in Print: 2024-04-25

© 2024 IUPAC & De Gruyter

Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1020/html
Button zum nach oben scrollen