Abstract
Alkyl bromides are used as initiators in most of the atom transfer radical polymerization (ATRP) process and play an important role for controlling the ATRP equilibrium. In this work, the effect of solvent on equilibrium constant of ATRP (K ATRP) and rate constant of activation (k act) of three isomeric alkyl bromides [namely, N-phenyl(3-bromo-3-methyl)succinimide, N-phenyl(3-bromo-4-methyl)succinimide, and N-phenyl(3-bromomethyl)succinimide] is reported. The k act and K ATRP values of alkyl bromide are determined experimentally using UV–Vis-NIR spectrometry. The termination rate constant for model compound is calculated using DOSY NMR spectroscopy. The k act and K ATRP values for the mentioned alkyl bromides are determined in five different polar solvent and the effect of polarity is observed. The obtained values of k act and K ATRP of N-phenyl(3-bromo-3-methyl)succinimide in acetonitrile at 25 °C is 6.60 × 10−2 L mol−1 s−1 and 1.42 × 10−9, respectively. These values are quite comparable with the experimentally determined reported k act and K ATRP of values of acrylates and benzyls initiators. Alternatively, the investigation of possible chain initiation activity for the ATRP process for the mentioned alkyl bromides is carried out theoretically using density functional theory (DFT) method [B3LYP/6-31+G(d) level]. A good correlation is obtained between the experimentally determined and theoretically calculated K ATRP values of studied alkyl bromides in chosen solvents. Significantly, it is found that the values of k act and K ATRP of alkyl bromides is solvent dependent and the magnitude values of the k act and K ATRP increases with increasing the solvent polarity. The proposed bromo substituted succinimides can be used as the initiator for the polymerization of acrylates, benzyls, maleimides, and itaconimides monomer under the selected solvent system.
-
Research funding: This study was supported by Birla Institute of Technology and Science, Pilani – K. K. Birla Goa Campus, Goa, India.
References
[1] R. B. Grubbs, R. H. Grubbs. Macromolecules 50, 6979 (2017), https://doi.org/10.1021/acs.macromol.7b01440.Search in Google Scholar
[2] X. Pan, M. Fantin, F. Yuan, K. Matyjaszewski. Chem. Soc. Rev. 47, 5457 (2018), https://doi.org/10.1039/c8cs00259b.Search in Google Scholar PubMed
[3] K. Matyjaszewski, J. Xia. Chem. Rev. 101, 2921 (2001), https://doi.org/10.1021/cr940534g.Search in Google Scholar PubMed
[4] K. Matyjaszewski. Macromolecules 45, 4015 (2012), https://doi.org/10.1021/ma3001719.Search in Google Scholar
[5] N. V. Tsarevsky, K. Matyjaszewski. in Fundamentals of Controlled/Living Radical Polymerization, 4, p. 287, Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken, New Jersey, USA (2013).10.1039/9781849737425-00287Search in Google Scholar
[6] K. Matyjaszewski, N. V. Tsarevsky. J. Am. Chem. Soc. 136, 6513 (2014), https://doi.org/10.1021/ja408069v.Search in Google Scholar PubMed
[7] A. Mullar, K. Matyjaszewski. in Controlled and Living Polymerization, Chapter 3, pp. 103–155, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim (2009).10.1002/9783527629091Search in Google Scholar
[8] C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T. Nguyen, N. Adnan, S. Oliver, S. Shanmugam, J. Yeow. Chem. Rev. 116, 1803 (2016), https://doi.org/10.1021/acs.chemrev.5b00396.Search in Google Scholar PubMed
[9] H. Fischer. Chem. Rev. 101, 3581 (2001), https://doi.org/10.1021/cr990124y.Search in Google Scholar PubMed
[10] T. G. Ribelli, F. Lorandi, M. Fantin, K. Matyjaszewski. Macromol. Rapid Commun. 40, 1800616 (2019), https://doi.org/10.1002/marc.201800616.Search in Google Scholar PubMed
[11] F. Lorandi, K. Matyjaszewski. Isr. J. Chem. 59, 1 (2019), https://doi.org/10.1002/ijch.201900079.Search in Google Scholar
[12] W. Tang, N. V. Tsarevsky, K. Matyjaszewski. J. Am. Chem. Soc. 128, 1598 (2006), https://doi.org/10.1021/ja0558591.Search in Google Scholar PubMed
[13] G. Chambard, B. Klumperman, A. L. German. Macromolecules 33, 4417 (2000), https://doi.org/10.1021/ma992153g.Search in Google Scholar
[14] A. K. Nanda, K. Matyjaszewski. Macromolecules 36, 1487 (2003), https://doi.org/10.1021/ma0340107.Search in Google Scholar
[15] K. Matyjaszewski, B. Goebelt, H-j. Paik, C. P. Horwitz. Macromolecules 34, 430 (2001), https://doi.org/10.1021/ma001181s.Search in Google Scholar
[16] T. Pintauer, W. Braunecker, E. Collange, R. Poli, K. Matyjaszewski. Macromolecules 37, 2679 (2004), https://doi.org/10.1021/ma035634f.Search in Google Scholar
[17] D. M. Haddleton, S. Perrier, S. A. F. Bon. Macromolecules 33, 8246 (2000), https://doi.org/10.1021/ma001097c.Search in Google Scholar
[18] S. Pascual, B. Coutin, M. Tardi, A. Polton, J. P. Vairon. Macromolecules 32, 1432 (1999), https://doi.org/10.1021/ma981341o.Search in Google Scholar
[19] X. S. Wang, S. P. Armes. Macromolecules 33, 6640 (2000), https://doi.org/10.1021/ma000671h.Search in Google Scholar
[20] W. Tang, K. Matyjaszewski. Macromolecules 40, 1858 (2007), https://doi.org/10.1021/ma062897b.Search in Google Scholar
[21] H. S. Yu, J. Kim, V. Vasu, C. P. Simpson, A. D. Asandei. ACS Catal. 10, 6645 (2020), https://doi.org/10.1021/acscatal.0c01207.Search in Google Scholar
[22] A. D. Asandei, V. Percec. J. Polym. Sci. Polym. Chem. 39, 3392 (2001), https://doi.org/10.1002/pola.1322.Search in Google Scholar
[23] V. Percec, C. Grigoras. J. Polym. Sci. Polym. Chem. 43, 5283 (2005), https://doi.org/10.1002/pola.21060.Search in Google Scholar
[24] K. Matyjaszewski, H. Paik, P. Zhou, S. J. Diamanti. Macromolecules 34, 5125 (2001), https://doi.org/10.1021/ma010185+.10.1021/ma010185+Search in Google Scholar
[25] W. Tang, K. Matyjaszewski. Macromolecules 39, 4953 (2006), https://doi.org/10.1021/ma0609634.Search in Google Scholar
[26] K. Matyjaszewski, A. K. Nanda, W. Tang. Macromolecules 38, 2015 (2005), https://doi.org/10.1021/ma047531i.Search in Google Scholar
[27] G. Odian. in Principles of Polymerization, p. 198, Wiley Interscience Staten Island, Hoboken, New Jersey, US, 4th ed. (2004).10.1002/047147875X.ch3Search in Google Scholar
[28] A. L. J. Beckwith, V. W. Bowry, K. U. Ingold. J. Am. Chem. Soc. 114, 4983 (1992), https://doi.org/10.1021/ja00039a005.Search in Google Scholar
[29] A. L. J. Beckwith, V. W. Bowry, M. Graeme. J. Org. Chem. 53, 1632 (1988), https://doi.org/10.1021/jo00243a008.Search in Google Scholar
[30] C. Deoghare, C. Baby, V. S. Nadkarni, R. N. Behera, R. Chauhan. RSC Adv. 4, 48163 (2014), https://doi.org/10.1039/c4ra08981b.Search in Google Scholar
[31] F. Seeliger, K. Matyjaszewski. Macromolecules 42, 6050 (2009), https://doi.org/10.1021/ma9010507.Search in Google Scholar
[32] M. Horn, K. Matyjaszewski. Macromolecules 46, 3350 (2013), https://doi.org/10.1021/ma400565k.Search in Google Scholar
[33] W. A. Braunecker, N. V. Tsarevsky, A. Gennaro, K. Matyjaszewski. Macromolecules 42, 6348 (2009), https://doi.org/10.1021/ma901094s.Search in Google Scholar
[34] H. Fischer. J. Polym. Sci. Polym. Chem. 37, 1885 (1999), https://doi.org/10.1002/(sici)1099-0518(19990701)37:13<1885::aid-pola1>3.0.co;2-1.10.1002/(SICI)1099-0518(19990701)37:13<1885::AID-POLA1>3.0.CO;2-1Search in Google Scholar
[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision B.01 2010, Gaussian, Inc., Wallingford CT (2010).Search in Google Scholar
[36] C. Lee, W. Yang, R. G. Parr. Phys. Rev. B37, 785 (1988), https://doi.org/10.1103/PhysRevB.37.785.Search in Google Scholar
[37] A. D. Becke. Phys. Rev. A38, 3098 (1988), https://doi.org/10.1103/PhysRevA.38.3098.Search in Google Scholar
[38] A. D. Becke. J. Chem. Phys. 98, 5648 (1993), https://doi.org/10.1063/1.464913.Search in Google Scholar
[39] J. B. Foresman, A. Frisch. Exploring Chemistry with Electronics Structure Methods, Gaussian Inc., Pittsburgh, 2nd ed., Vol. 64 (1996).Search in Google Scholar
[40] C. E. Moore. Atomic Energy Levels, US Government Printing Office, Washington DC, Vols. I–III (1952).Search in Google Scholar
[41] S. Miertus, E. Scrocco, J. Tomasi. Chem. Phys. 55, 117 (1981), https://doi.org/10.1016/0301-0104(81)85090-2.Search in Google Scholar
[42] M. B. Gillies, K. Matyjaszewski, P-O. Norrby, T. Pintauer, R. Poli, P. Richard. Macromolecules 36, 8551 (2003), https://doi.org/10.1021/ma0351672.Search in Google Scholar
[43] C. Y. Lin, S. R. A. Marque, K. Matyjaszewski, M. L. Coote. Macromolecules 44, 7568 (2011), https://doi.org/10.1021/ma2014996.Search in Google Scholar
[44] T. Guliashvili, V. Percec. J. Polym. Sci. Polym. Chem. 45, 1607 (2007), https://doi.org/10.1002/pola.21927.Search in Google Scholar
[45] R. Abarca-Vargas, C. F. Peña Malacara, V. L. Petricevich. Antioxidants 5, 45 (2016), https://doi.org/10.3390/antiox5040045.Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-2012).
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode