Abstract
Oxidative degradation of o-, m- and p-cresols using ozone in the presence of V2O5-supported metal (Mn, Fe, Ni) catalysts was studied under ambient reaction conditions. Metal (Mn, Fe, Ni) loaded V2O5 catalysts were prepared using a wet-impregnation method, thereafter, characterized, and analyzed by use of the XRD, FT-IR, SEM-EDX, TEM, and ICP-OES. Results show the effect of the amount of a metal that was loaded on the support, particularly, how it affects the resultant catalysts’ (i) crystallite size, (ii) dispersion of an active metal over the surface of a support, and (iii) catalytic activity. Mn-loaded catalysts were found to be relatively more active for the conversion of individual cresol isomers and the activity of this catalyst was significantly enhanced at a lower Mn to V2O5 ratio (2.5 wt%). Mn(2.5 %)/V2O5 catalyst led to conversions of 66.78, 71.01 and 73.68 % with o-, m-, and p-cresols respectively within 24 h of oxidation. Oxidation products were derivatized by ethanol and a few were positively detected using GC-MS. o-Tolyl acetate and 2,5-dihydroxy toluene were detected from o-cresol, m-tolyl acetate, and 2,3-dihydroxy toluene from m-cresol and p-tolyl acetate and 3,4-dihydroxy toluene from p-cresol oxidation. Dimethyl maleate and dimethyl oxalate were detected as common products in all three isomers’ oxidation.
Article note:
A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2021) held on-line, 9–13 August 2021.
Funding source: National Research Foundation
Award Identifier / Grant number: Incentive Fund Grant for Rated Researchers (103691)
Funding source: University of Zululand
Award Identifier / Grant number: Project S 451/12
Funding source: National Research Foundation
Award Identifier / Grant number: Research Developmental Grant for Rated Researchers (112145)
-
Research funding: We acknowledge the EM Unit at the UKZN, Westville campus, for permitting us to use their electron microscopes instrument (TEM & SEM). Z.S Ncanana thanks the NRF-SaIF for financial support. V.S.R Pullabhotla further acknowledges the Research & Innovation Office, UZ for the financial support through the research project S 451/12 and the National Research Foundation (NRF, South Arica) for the much needed in the form of the Incentive Fund Grant for Rated Researchers (103691) and National Research Foundation (NRF, South Arica) for the much needed in the form of the Research Developmental Grant for Rated Researchers (112145).
References
[1] EPA (United States Environmental Protection Agency), The Clean Air Act amendments of 1990 List of hazardous air pollutants (2020), https://www3.epa.gov/airto xics/orig1 89.html (accessed May 14, 2020).Search in Google Scholar
[2] Y. Yu, H. Wei, L. Yu, B. Gu, X. Li, X. Rong, C. Sun. Catal. Sci. Technol. 6, 1085 (2016).10.1039/C5CY00900FSearch in Google Scholar
[3] X. Wei T. Gilevska, F. Wetzig, C. Dorer, H. H. Richnow, C. Vogt. Environ. Pollut. 210, 166 (2016).10.1016/j.envpol.2015.11.005Search in Google Scholar PubMed
[4] C. J. Escudero, O. Iglesias, S. Dominguez, M. J. Rivero, I. Ortiz. J. Environ. Manag. 195, 117 (2017).10.1016/j.jenvman.2016.04.049Search in Google Scholar
[5] R. Surkatti, M. H. El-Naas. Int. J. Environ. Sci. Technol. 15, 301 (2018).10.1007/s13762-017-1383-2Search in Google Scholar
[6] A. Kahru, A. Maloverjan, H. Sillak, L. Põllumaa. Environ. Sci. Pollut. Control Ser. 9, 27 (2002).10.1007/BF02987422Search in Google Scholar PubMed
[7] J. Michałowicz, W. Duda. Pol. J. Environ. Stud. 16, 347 (2007).Search in Google Scholar
[8] J. M. Sanders, J. R. Bucher, J. C. Peckham, G. E. Kissling, M. R. Hejtmancik, R. S. Chhabra. Toxicology 257, 33 (2009).10.1016/j.tox.2008.12.005Search in Google Scholar PubMed PubMed Central
[9] P. J. J. Alvarez, T. M. Vogel. Water Sci. Technol. 31, 15 (1995).10.2166/wst.1995.0005Search in Google Scholar
[10] C. D. Silva, J. Gómez, E. Houbron, F. M. Cuervo-López, A. C. Texier. Chemosphere 75, 1387 (2009).10.1016/j.chemosphere.2009.02.059Search in Google Scholar PubMed
[11] O. G. Sas, M. Castro, Á. Domínguez, B. González. Separ. Purif. Technol. 227, 115703 (2019).10.1016/j.seppur.2019.115703Search in Google Scholar
[12] H. Hadjar, B. Hamdi, C. O. Ania. J. Hazard Mater. 188, 304 (2011).10.1016/j.jhazmat.2011.01.108Search in Google Scholar PubMed
[13] M. C. Valsania, F. Fasano, S. D. Richardson, M. Vincenti. Water Res. 46, 2795 (2012).10.1016/j.watres.2012.02.040Search in Google Scholar PubMed
[14] K. A. Kumar, L. Chandana, P. Ghosal, C. Subrahmanyam. Mol. Catal. 451, 87 (2018).10.1016/j.mcat.2017.11.014Search in Google Scholar
[15] R. Khunphonoi, N. Grisdanurak. Chem. Eng. J. 296, 420 (2016).10.1016/j.cej.2016.03.117Search in Google Scholar
[16] Y. Abdollahi, A. H. Abdullah, Z. Zainal, N. A. Yusof. Int. J. Mol. Sci. 13, 302 (2012).10.3390/ijms13010302Search in Google Scholar PubMed PubMed Central
[17] C. Flox, C. Arias, E. Brillas, A. Savall, K. Groenen-Serrano. Chemosphere 74, 1340 (2009).10.1016/j.chemosphere.2008.11.050Search in Google Scholar PubMed
[18] V. Kavitha, K. Palanivelu. Water Res. 39, 3062 (2005).10.1016/j.watres.2005.05.011Search in Google Scholar PubMed
[19] L. Yu, P. Han, H. Jin, H. Wei, W. Liu, L. Ma, C. Xu. Process Saf. Environ. Protect. 129, 63 (2019).10.1016/j.psep.2019.06.020Search in Google Scholar
[20] R. C. Martins, R. J. Lopes, R. M. Quinta-Ferreira. Chem. Eng. J. 165, 678 (2010).10.1016/j.cej.2010.09.060Search in Google Scholar
[21] X. Li, Y. Li, H. Zhang, Z. Shen, S. Cheng, G. Liu, H. Yao. Chin. Chem. Lett. 32, 3221 (2021).10.1016/j.cclet.2021.03.072Search in Google Scholar
[22] Z. S. Ncanana, V. S. R. Rajasekhar Pullabhotla. J. Environ. Chem. Eng. 7, 103072 (2019).10.1016/j.jece.2019.103072Search in Google Scholar
[23] D. Kanakaraju, B. D. Glass, M. Oelgemöller. J. Environ. Manag. 219, 189 (2018).10.1016/j.jenvman.2018.04.103Search in Google Scholar
[24] P. Liu, S. He, H. Wei, J. Wang, C. Sun. Ind. Eng. Chem. Res. 54, 130 (2015).10.1021/ie5037897Search in Google Scholar
[25] Y. Abdollahi, A. Zakaria, A. H. Abdullah, H. R. Fard Masoumi, H. Jahangirian, K. Shameli, T. Abdollahi. Chem. Cent. J. 6, 1 (2012).10.1186/1752-153X-6-1Search in Google Scholar PubMed PubMed Central
[26] F. Nawaz, Y. Xie, H. Cao, J. Xiao, X. Zhang, M. Li, F. Duan. Catal. Today 258, 595 (2015).10.1016/j.cattod.2015.03.044Search in Google Scholar
[27] S. T. Mkhondwane, V. S. R. R. Pullabhotla. Catalysts 9, 958 (2019). https://doi.org/10.3390/catal9110958.Search in Google Scholar
[28] T. Zhang, J. Ma. J. Mol. Catal. Chem. 279, 82 (2008).10.1016/j.molcata.2007.09.030Search in Google Scholar
[29] W. Qin, X. Li, J. Qi. Langmuir 25, 8001 (2009).10.1021/la900476mSearch in Google Scholar
[30] Z. Q. Liu, J. Tu, Q. Wang, Y. H. Cui, L. Zhang, X. Wu, J. Ma. Separ. Purif. Technol. 200, 51 (2018).10.1016/j.seppur.2018.02.026Search in Google Scholar
[31] H. Einaga, N. Maeda, S. Yamamoto, Y. Teraoka. Catal. Today 245, 22 (2015).10.1016/j.cattod.2014.09.018Search in Google Scholar
[32] B. Kasprzyk-Hordern, M. Ziółek, J. Nawrocki. Appl. Catal. B Environ. 46, 639 (2003).10.1016/S0926-3373(03)00326-6Search in Google Scholar
[33] T. S. Ping, L. W. Hua, Z. J. Qing, C. C. Nan. Ozone Sci. Eng. 24, 117 (2002).10.1080/01919510208901602Search in Google Scholar
[34] D. A. Solis-Casados, L. Escobar-Alarcon, A. Infantes-Molina, T. Klimova, L. Serrato-Garcia, E. Rodriguez-Castellon, S. Hernandez-Lopez, A. Dorazco-Gonzalez. J. Chem. 2017, 1 (2017), doi:https://doi.org/10.1155/2017/5849103.Search in Google Scholar
[35] Z. S. Ncanana, V. S. R. R. Pullabhotla. Catal. Lett. 148, 1535 (2018).10.1007/s10562-018-2360-1Search in Google Scholar
[36] Z. S. Ncanana, N. J. Sadgrove, V. S. R. R. Pullabhotla. Catal. Today 358, 284 (2019), doi:https://doi.org/10.1016/j.cattod.2019.10.005.Search in Google Scholar
[37] Y. Shimizu, K. Nagase, N. Miura, N. Yamazoe. Solid State Ionics 53–56, 490 (1992).10.1016/0167-2738(92)90419-PSearch in Google Scholar
[38] Y. Chen, G. Yang, Z. Zhang, X. Yang, W. Hou, J. J. Zhu. Nanoscale 2, 2131 (2010).10.1039/c0nr00246aSearch in Google Scholar PubMed
[39] Y. Zhao, Z. Qin, G. Wang, M. Dong, L. Huang, Z. Wu, J. Wang. Fuel 104, 22 (2013).10.1016/j.fuel.2010.03.008Search in Google Scholar
[40] E. P. Reddy, R. S. Varma. J. Catal. 221, 93 (2004).10.1016/j.jcat.2003.07.011Search in Google Scholar
[41] X. Du, G. Huang, Y. Qin, L. Wang. RSC Adv. 5, 76352 (2015).10.1039/C5RA15284DSearch in Google Scholar
[42] Y. Chen, G. Yang, Z. Zhang, X. Yang, W. Hou, J. J. Zhu. Nanoscale 2, 2131 (2010).10.1039/c0nr00246aSearch in Google Scholar
[43] A. Sakunthala, M. V. Reddy, S. Selvasekarapandian, B. V. R. Chowdari, P. C. Selvin. Energy Environ. Sci. 4, 1712 (2011).10.1039/c0ee00513dSearch in Google Scholar
[44] S. H. Ng, T. J. Patey, R. Büchel, F. Krumeich, J. Z. Wang, H. K. Liu, P. Novák. Phys. Chem. Chem. Phys. 11, 3748 (2009).10.1039/b821389pSearch in Google Scholar PubMed
[45] Y. Liu, E. Uchaker, N. Zhou, J. Li, Q. Zhang, G. Cao. J. Mater. Chem. 22, 24439 (2012).10.1039/c2jm34078jSearch in Google Scholar
[46] M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Zheng. CrystEngComm 15, 7010 (2013).10.1039/c3ce40603bSearch in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-1005).
© 2022 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- The virtual conference on chemistry and its applications, VCCA-2021, 9–13 August 2021
- Conference papers
- Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin
- Bonding analysis of the C2 precursor Me3E–C2–I(Ph)FBF3 (E = C, Si, Ge)
- Supporting the fight against the proliferation of chemical weapons through cheminformatics
- Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds
- HCV genotype-specific drug discovery through structure-based virtual screening
- ExcelAutomat 1.4: generation of supporting information
- Use of Circular Dichroism in the characterization of the fusion protein SARS-CoV-2 S protein (RBD)-hFc
- Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process
- Degradation of o-, m-, p-cresol isomers using ozone in the presence of V2O5-supported Mn, Fe, and Ni catalysts
- The beginnings of chemistry: from ancient times until 1661
- Chemical substitution in processes for inherently safer design: pros and cons
- Experimental and theoretical study of the dye-sensitized solar cells using Hibiscus sabdariffa plant pigment coupled with polyaniline/graphite counter electrode