Abstract
Combination therapies that include treatment of cancerous cells with histone deacetylase (HDACs) inhibitors prior to treatment with topoisomerase inhibitors have shown synergistic anti-tumor effects. The promising results of such combination therapies have led to the development of a novel class of multitarget hybrid inhibitors that are designed by merging the scaffolds of topoisomerase and HDAC inhibitors, which consequently inhibit both classes of cancer-inducing targets simultaneously. These multitarget hybrids also have pharmacokinetic advantages over the traditional combinatorial approach, which struggles with disadvantages like maintaining optimum concentrations of multiple toxic drugs, which in turn leads to enhanced toxicity and other side-effects associated with the multiple drugs administered. Binding modes of some Top-HDAC hybrids have been predicted with the help of molecular docking in order to understand the binding of such hybrids with their target receptors and to identify the structural determinants responsible for their synergistic anti-tumor effect. Extra precision docking of Top1-HDAC and Top2-HDAC hybrid inhibitors has been carried out with Top1-DNA, Top2-DNA, HDAC1 and HDAC6 receptor structures. A detailed analysis of the molecular interactions of the hybrids with the target receptor binding sites has been undertaken and their predicted binding modes have been compared with the crystal binding modes of their component drugs. An explanation for the apparent selectivity of the hybrids towards HDAC6 has also been provided.
Funding source: University Grants Commission 10.13039/501100001501
Award Identifier / Grant number: 22/06/2014(i)EU-V
Acknowledgement
Kriti Kashyap thanks the University Grants Commission (UGC) for a research fellowship.
-
Research funding: Senior research fellowship from University Grants Commission (Grant Reference ID: 22/06/2014(i)EU-V).
References
[1] Y. H. Seo. J. Cancer Prev. 20, 85 (2015), https://doi.org/10.15430/jcp.2015.20.2.85.Suche in Google Scholar
[2] R. B. Mokhtari, T. S. Homayouni, N. Baluch, E. Morgatskaya, S. Kumar, B. Das, H. Yeger. Oncotarget 8, 38022 (2017), https://doi.org/10.18632/oncotarget.16723.Suche in Google Scholar PubMed PubMed Central
[3] L. Musso, S. Dallavalle, F. Zunino. Biochem. Pharmacol. 96, 297 (2015), https://doi.org/10.1016/j.bcp.2015.06.006.Suche in Google Scholar PubMed
[4] A. Suraweera, K. J. O’Byrne, D. J. Richard. Front. Oncol. 8, 92 (2018), https://doi.org/10.3389/fonc.2018.00092.Suche in Google Scholar PubMed PubMed Central
[5] K. T. Thurn, S. Thomas, A. Moore, P. N. Munster. Future Oncol. 7, 263 (2011), https://doi.org/10.2217/fon.11.2.Suche in Google Scholar PubMed PubMed Central
[6] R. Cincinelli, L. Musso, R. Artali, M. B. Guglielmi, I. La Porta, C. Melito, F. Colelli, F. Cardile, G. Signorino, A. Fucci, M. Frusciante. PloS One 13, 0205018 (2018), https://doi.org/10.1371/journal.pone.0205018.Suche in Google Scholar PubMed PubMed Central
[7] R. Cincinelli, L. Musso, R. Artali, M. B. Guglielmi, E. Bianchino, F. Cardile, F. Colelli, C. Pisano, S. Dallavalle. Eur. J. Med. Chem. 143, 2005 (2018), https://doi.org/10.1016/j.ejmech.2017.11.021.Suche in Google Scholar PubMed
[8] W. Guerrant, V. Patil, J. C. Canzoneri, L. P. Yao, R. Hood, A. K. Oyelere. Bioorg. Med. Chem. Lett. 23, 3283 (2013), https://doi.org/10.1016/j.bmcl.2013.03.108.Suche in Google Scholar PubMed PubMed Central
[9] W. Guerrant, V. Patil, J. C. Canzoneri, A. K. Oyelere. J. Med. Chem. 55, 1465 (2012), https://doi.org/10.1021/jm200799p.Suche in Google Scholar PubMed PubMed Central
[10] X. Zhang, B. Bao, X. Yu, L. Tong, Y. Luo, Q. Huang, M. Su, L. Sheng, J. Li, H. Zhu, B. Yang. Bioorg. Med. Chem. 21, 6981 (2013), https://doi.org/10.1016/j.bmc.2013.09.023.Suche in Google Scholar PubMed
[11] S. He, G. Dong, Z. Wang, W. Chen, Y. Huang, Z. Li, Y. Jiang, N. Liu, J. Yao, Z. Miao, W. Zhang. ACS Med. Chem. Lett. 6, 239 (2015), https://doi.org/10.1021/ml500327q.Suche in Google Scholar
[12] L. Ferreira, R. dos Santos, G. Oliva, A. Andricopulo. Molecules 20, 13384 (2015), https://doi.org/10.3390/molecules200713384.Suche in Google Scholar
[13] Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY (2021).Suche in Google Scholar
[14] Y. Hai, D. W. Christianson. Nat. Chem. Biol. 12, 741 (2016), https://doi.org/10.1038/nchembio.2134.Suche in Google Scholar
[15] J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy. J. Comput. Chem. 26, 1752 (2005), https://doi.org/10.1002/jcc.20292.Suche in Google Scholar
[16] R. Arora, U. Issar, R. Kakkar. J. Mol. Graph. Model. 83, 64 (2018), https://doi.org/10.1016/j.jmgm.2018.04.018.Suche in Google Scholar
[17] A. E. Cho, D. Rinaldo. J. Comput. Chem. 30, 2609 (2009), https://doi.org/10.1002/jcc.21270.Suche in Google Scholar
[18] R. Kakkar. Int. Res. J. Pharm. 1, 50 (2011).10.51611/iars.irj.v1i2.2011.13Suche in Google Scholar
[19] A. Khandelwal, V. Lukacove, D. Comez, D. M. Kroll, S. Raha, S. Balaz. J. Med. Chem. 48, 5437 (2005), https://doi.org/10.1021/jm049050v.Suche in Google Scholar
[20] T. Kumari, U. Issar, R. Kakkar. Curr. Comput. Aided Drug Des. 10, 315 (2014).10.2174/157340991004150518145522Suche in Google Scholar
[21] R. B. Murphy, D. M. Philipp, R. A. Friesner. J. Comput. Chem. 21, 1442 (2000), https://doi.org/10.1002/1096-987x(200012)21:16<1442::aid-jcc3>3.0.co;2-o.10.1002/1096-987X(200012)21:16<1442::AID-JCC3>3.0.CO;2-OSuche in Google Scholar
[22] D. M. Philipp, R. A. Friesner. J. Comput. Chem. 20, 1468 (1999), https://doi.org/10.1002/(sici)1096-987x(19991115)20:14<1468::aid-jcc2>3.0.co;2-0.10.1002/(SICI)1096-987X(19991115)20:14<1468::AID-JCC2>3.0.CO;2-0Suche in Google Scholar
[23] Schrödinger Release 2021-2: LigPrep, Schrödinger, LLC, New York, NY (2021).Suche in Google Scholar
[24] J. R. Greenwood, D. Calkins, A. P. Sullivan, J. C. Shelley. J. Comput. Aided Mol. Des. 24, 591 (2010), https://doi.org/10.1007/s10822-010-9349-1.Suche in Google Scholar
[25] J. C. Shelley, A. Cholleti, L. Frye, J. R. Greenwood, M. R. Timlin, M. Uchimaya. J. Comput. Aided Mol. Des. 21, 681 (2007), https://doi.org/10.1007/s10822-007-9133-z.Suche in Google Scholar
[26] R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, D. E. Shaw, M. Shelley, J. K. Perry, P. Francis, P. S. Shenkin. J. Med. Chem. 47, 1739 (2004), https://doi.org/10.1021/jm0306430.Suche in Google Scholar
[27] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz. J. Med. Chem. 49, 6177 (2006), https://doi.org/10.1021/jm051256o.Suche in Google Scholar
[28] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks. J. Med. Chem. 47, 1750 (2004), https://doi.org/10.1021/jm030644s.Suche in Google Scholar
[29] W. L. Jørgensen, E. M. Duffy. Adv. Drug Deliv. Rev. 54, 355 (2002), https://doi.org/10.1016/s0169-409x(02)00008-x.Suche in Google Scholar
[30] E. M. Duffy, W. L. Jorgensen. J. Am. Chem. Soc. 122, 2878 (2000), https://doi.org/10.1021/ja993663t.Suche in Google Scholar
[31] B. L. Staker, M. D. Feese, M. Cushman, Y. Pommier, D. Zembower, L. Stewart, A. B. Burgin. J. Med. Chem. 48, 2336 (2005), https://doi.org/10.1021/jm049146p.Suche in Google Scholar
[32] K. Kashyap, R. Kakkar. J. Biomol. Struct. Dyn. 39, 502 (2021), https://doi.org/10.1080/07391102.2019.1711191.Suche in Google Scholar
[33] N. J. Porter, A. Mahendran, R. Breslow, D. W. Christianson. Proc. Natl. Acad. Sci. Unit. States Am. 114, 13459 (2017), https://doi.org/10.1073/pnas.1718823114.Suche in Google Scholar
[34] N. J. Porter, J. D. Osko, D. Diedrich, T. Kurz, J. M. Hooker, F. K. Hansen, D. W. Christianson. J. Med. Chem. 61, 8054 (2018), https://doi.org/10.1021/acs.jmedchem.8b01013.Suche in Google Scholar
[35] C. C. Wu, T. K. Li, L. Farh, L. Y. Lin, T. S. Lin, Y. J. Yu, T. J. Yen, C. W. Chiang, N. L. Chan. Science 333, 459 (2011), https://doi.org/10.1126/science.1204117.Suche in Google Scholar
[36] D. C. Marchion, E. Bicaku, A. I. Daud, V. Richon, D. M. Sullivan, P. N. Munster. J. Cell. Biochem. 92, 223 (2004), https://doi.org/10.1002/jcb.20045.Suche in Google Scholar
[37] S. C. Tsai, N. Valkov, W. M. Yang, J. Gump, D. Sullivan, E. Seto. Nat. Genet. 26, 349 (2000), https://doi.org/10.1038/81671.Suche in Google Scholar
[38] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney. Adv. Drug Deliv. Rev. 23, 3 (1997), https://doi.org/10.1016/s0169-409x(96)00423-1.Suche in Google Scholar
[39] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney. Adv. Drug Deliv. Rev. 46, 3 (2001), https://doi.org/10.1016/s0169-409x(00)00129-0.Suche in Google Scholar
[40] V. M. Herben, J. H. Beijnen, W. Wim, J. H. Schellens. Pharm. World Sci. 20, 161 (1998), https://doi.org/10.1023/a:1008613806051.10.1023/A:1008613806051Suche in Google Scholar
[41] S. Kalepu, V. Nekkanti. Acta Pharm. Sin. B 5, 442 (2015), https://doi.org/10.1016/j.apsb.2015.07.003.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-0111).
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities