A retrospective on MXene-based composites for solar fuel production
-
Yisong Zhu
Yisong Zhu is pursuing his master’s degree under the supervision of Prof. Nan Zhang at Hunan University, PR China. His research interests are in the fabrication of MXene-based composites and their applications in heterogeneous photocatalysis.und Nan Zhang
Nan Zhang is now a professor at the College of Materials Science and Engineering at Hunan University. Her main research interests include the design and controlled synthesis of composites towards photocatalytic applications and their mechanism investigations. She is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.
Abstract
MXene with two-dimensional layered structure and desirable electronic properties has emerged as a promising candidate to construct MXene-based composites towards various photocatalytic applications. As compared to the downhill-type photodegradation reactions, artificial photosynthesis often involves thermodynamic uphill reactions with a large positive change in Gibbs free energy. Recent years have witnessed the effectiveness of MXene in enhancing the photoactivity of MXene-based composites for solar fuel synthesis. In this review, we mainly focus on the applications of MXene-based composites for photocatalytic solar fuel production. We will start from summarizing the general synthesis of MXene-based composite photocatalysts. Then the recent progress on MXene-based composite photocatalysts for solar fuel synthesis, including water splitting for H2 production, CO2 reduction to solar fuels, and N2 fixation for NH3 synthesis is elucidated. The roles of MXene playing in improving the photoactivity of MXene-based composites in these applications have also been discussed. In the last section, perspectives on the future research directions of MXene-based composites towards the applications of artificial photosynthesis are presented.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51802040, 51977071, and 21802020
Funding source: Fundamental Research Funds for the Central Universities
Funding source: Natural Science Foundation of Hunan Province
Award Identifier / Grant number: 2020JJ4192 and 2020JJ3004
Funding source: Open Research Project of Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
Funding source: Chinese Academy of Sciences
Award Identifier / Grant number: 201901
About the authors

Yisong Zhu is pursuing his master’s degree under the supervision of Prof. Nan Zhang at Hunan University, PR China. His research interests are in the fabrication of MXene-based composites and their applications in heterogeneous photocatalysis.

Nan Zhang is now a professor at the College of Materials Science and Engineering at Hunan University. Her main research interests include the design and controlled synthesis of composites towards photocatalytic applications and their mechanism investigations. She is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.
Research funding: This research was supported by the National Natural Science Foundation of China (51802040, 51977071, and 21802020), the Fundamental Research Funds for the Central Universities, the Natural Science Foundation of Hunan Province (2020JJ4192 and 2020JJ3004), and the Open Research Project of Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Chinese Academy of Sciences (No. 201901).
References
[1] P. D. Tran, L. H. Wong, J. Barber, J. S. C. Loo. Energy Environ. Sci.5, 5902 (2012), https://doi.org/10.1039/c2ee02849b.Suche in Google Scholar
[2] S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk. Angew. Chem. Int. Ed.52, 7372 (2013), https://doi.org/10.1002/anie.201207199.Suche in Google Scholar PubMed
[3] N. S. Lewis, D. G. Nocera. Proc. Natl. Acad. Sci. U.S.A.103, 15729 (2006), https://doi.org/10.1073/pnas.0603395103.Suche in Google Scholar PubMed PubMed Central
[4] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang. Energy Environ. Sci.8, 731 (2015), https://doi.org/10.1039/c4ee03271c.Suche in Google Scholar
[5] J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer. Acc. Chem. Res.42, 1954 (2009), https://doi.org/10.1021/ar9001526.Suche in Google Scholar PubMed
[6] S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C. Richmond, T. Stoll, A. Llobet. Chem. Soc. Rev.43, 7501 (2014), https://doi.org/10.1039/c3cs60405e.Suche in Google Scholar PubMed
[7] A. J. Bard, M. A. Fox. Acc. Chem. Res.28, 141 (1995), https://doi.org/10.1021/ar00051a007.Suche in Google Scholar
[8] Q. Xiang, B. Cheng, J. Yu. Angew. Chem. Int. Ed.54, 11350 (2015), https://doi.org/10.1002/anie.201411096.Suche in Google Scholar PubMed
[9] L. Yuan, Y.-J. Xu. Appl. Surf. Sci.342, 154 (2015), https://doi.org/10.1016/j.apsusc.2015.03.050.Suche in Google Scholar
[10] S. Xie, Q. Zhang, G. Liu, Y. Wang. Chem. Commun.52, 35 (2016), https://doi.org/10.1039/c5cc07613g.Suche in Google Scholar PubMed
[11] J. C. Colmenares, Y.-J. Xu (Eds.). Heterogeneous Photocatalysis. Springer, Berlin, Heidelberg (2016).10.1007/978-3-662-48719-8Suche in Google Scholar
[12] J. Li, H. Li, G. Zhan, L. Zhang. Acc. Chem. Res.50, 112 (2017), https://doi.org/10.1021/acs.accounts.6b00523.Suche in Google Scholar PubMed
[13] J. Yang, Y. Guo, W. Lu, R. Jiang, J. Wang. Adv. Mater.30, 1802227 (2018), https://doi.org/10.1002/adma.201802227.Suche in Google Scholar PubMed
[14] J. Albero, Y. Peng, H. García. ACS Catal.10, 5734 (2020), https://doi.org/10.1021/acscatal.0c00478.Suche in Google Scholar
[15] Y. Huang, N. Zhang, Z. Wu, X. Xie. J. Mater. Chem. A8, 4978 (2020), https://doi.org/10.1039/c9ta13589h.Suche in Google Scholar
[16] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum. Adv. Mater.23, 4248 (2011), https://doi.org/10.1002/adma.201102306.Suche in Google Scholar PubMed
[17] H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J. W. Chew. Adv. Mater.30, 1704561 (2018), https://doi.org/10.1002/adma.201704561.Suche in Google Scholar PubMed
[18] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi. Adv. Mater.26, 992 (2014), https://doi.org/10.1002/adma.201304138.Suche in Google Scholar PubMed
[19] X. Xie, Z. Wu, N. Zhang. Chin. Chem. Lett.31, 1014 (2020).10.1016/j.cclet.2019.10.012Suche in Google Scholar
[20] J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li. Chemistry5, 18 (2019), https://doi.org/10.1016/j.chempr.2018.08.037.Suche in Google Scholar
[21] Z. Li, Y. Wu. Small15, 1804736 (2019), https://doi.org/10.1002/smll.201804736.Suche in Google Scholar PubMed
[22] J. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. Liu, M. H. Rummeli. Chem. Soc. Rev.48, 72 (2019), https://doi.org/10.1039/c8cs00324f.Suche in Google Scholar PubMed
[23] L. Cheng, X. Li, H. Zhang, Q. Xiang. J. Phys. Chem. Lett.10, 3488 (2019), https://doi.org/10.1021/acs.jpclett.9b00736.Suche in Google Scholar PubMed
[24] V.-H. Nguyen, B.-S. Nguyen, C. Hu, C. C. Nguyen, D. L. T. Nguyen, M. T. Nguyen Dinh, D.-V. N. Vo, Q. T. Trinh, M. Shokouhimehr, A. Hasani, S. Y. Kim, Q. V. Le. Nanomaterials10, 602 (2020), https://doi.org/10.3390/nano10040602.Suche in Google Scholar PubMed PubMed Central
[25] J. Chen, Q. Huang, H. Huang, L. Mao, M. Liu, X. Zhang, Y. Wei. Nanoscale12, 3574 (2020), https://doi.org/10.1039/c9nr08542d.Suche in Google Scholar PubMed
[26] H. L. Tan, R. Amal, Y. H. Ng. J. Mater. Chem. A5, 16498 (2017), https://doi.org/10.1039/c7ta04441k.Suche in Google Scholar
[27] C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang. Small Methods3, 1800376 (2019), https://doi.org/10.1002/smtd.201800376.Suche in Google Scholar
[28] B.-M. Jun, S. Kim, J. Heo, C. M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon. Nano Res.12, 471 (2019), https://doi.org/10.1007/s12274-018-2225-3.Suche in Google Scholar
[29] Y. Sun, X. Meng, Y. Dall’Agnese, C. Dall’Agnese, S. Duan, Y. Gao, G. Chen, X.-F. Wang. Nano Micro Lett.11, 79 (2019), https://doi.org/10.1007/s40820-019-0309-6.Suche in Google Scholar PubMed PubMed Central
[30] X. Zhan, C. Si, J. Zhou, Z. Sun. Nanoscale Horiz.5, 235 (2020), https://doi.org/10.1039/c9nh00571d.Suche in Google Scholar
[31] X. Xie, N. Zhang. Adv. Funct. Mater. (2020), https://doi.org/10.1002/adfm.202002528.Suche in Google Scholar
[32] C. J. Zhang, S. Pinilla, N. McEvoy, C. P. Cullen, B. Anasori, E. Long, S.-H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G. S. Duesberg, Y. Gogotsi, V. Nicolosi. Chem. Mater.29, 4848 (2017), https://doi.org/10.1021/acs.chemmater.7b00745.Suche in Google Scholar
[33] O. Mashtalir, K. M. Cook, V. N. Mochalin, M. Crowe, M. W. Barsoum, Y. Gogotsi. J. Mater. Chem. A2, 14334 (2014), https://doi.org/10.1039/c4ta02638a.Suche in Google Scholar
[34] H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, X. Yuan, G. Zeng, Z. J. Xu, S. Li, J. W. Chew. Appl. Catal. B245, 290 (2019), https://doi.org/10.1016/j.apcatb.2018.12.051.Suche in Google Scholar
[35] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao. Nat. Commun.8, 13907 (2017), https://doi.org/10.1038/ncomms13907.Suche in Google Scholar PubMed PubMed Central
[36] Y.-H. Li, F. Zhang, Y. Chen, J.-Y. Li, Y.-J. Xu. Green Chem.22, 163 (2020), https://doi.org/10.1039/c9gc03332g.Suche in Google Scholar
[37] L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, J. Sun. J. Colloid Interface Sci.545, 63 (2019), https://doi.org/10.1016/j.jcis.2019.03.014.Suche in Google Scholar PubMed
[38] L. Cheng, Q. Chen, J. Li, H. Liu. Appl. Catal. B267, 118379 (2020), https://doi.org/10.1016/j.apcatb.2019.118379.Suche in Google Scholar
[39] Y. Zhao, G. Zuo, Y. Wang, W. L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong. Angew. Chem. Int. Ed.59, 11287 (2020).10.1002/anie.202002136Suche in Google Scholar PubMed
[40] C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji, Z. Tong, W. Hou, Y. Zhang, J. Xu. J. Mater. Sci.54, 2458 (2019), https://doi.org/10.1007/s10853-018-2990-0.Suche in Google Scholar
[41] W. Lian, L. Wang, X. Wang, C. Shen, A. Zhou, Q. Hu. Funct. Mater. Lett.12, 1850100 (2019), https://doi.org/10.1142/s179360471850100x.Suche in Google Scholar
[42] A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He, Y. Liu. J. Phys. Chem. Lett.10, 6590 (2019), https://doi.org/10.1021/acs.jpclett.9b02605.Suche in Google Scholar PubMed
[43] H. Wang, R. Peng, Z. D. Hood, M. Naguib, S. P. Adhikari, Z. Wu. ChemSusChem9, 1490 (2016), https://doi.org/10.1002/cssc.201600165.Suche in Google Scholar PubMed
[44] R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao. Appl. Surf. Sci.473, 11 (2019).10.1016/j.apsusc.2018.12.071Suche in Google Scholar
[45] Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao. Mater. Lett.150, 62 (2015), https://doi.org/10.1016/j.matlet.2015.02.135.Suche in Google Scholar
[46] B. Li, S. Liu, C. Lai, G. Zeng, M. Zhang, M. Zhou, D. Huang, L. Qin, X. Liu, Z. Li, N. An, F. Xu, H. Yi, Y. Zhang, L. Chen. Appl. Catal. B266, 118650 (2020).10.1016/j.apcatb.2020.118650Suche in Google Scholar
[47] H. Feng, W. Wang, M. Zhang, S. Zhu, Q. Wang, J. Liu, S. Chen. Appl. Catal. B266, 118609 (2020), https://doi.org/10.1016/j.apcatb.2020.118609.Suche in Google Scholar
[48] J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, K.-H. Lam. Nano Energy61, 27 (2019), https://doi.org/10.1016/j.nanoen.2019.04.028.Suche in Google Scholar
[49] D. Ruan, M. Fujitsuka, T. Majima. Appl. Catal. B264, 118541 (2020), https://doi.org/10.1016/j.apcatb.2019.118541.Suche in Google Scholar
[50] C. Cui, R. Guo, H. Xiao, E. Ren, Q. Song, C. Xiang, X. Lai, J. Lan, S. Jiang. Appl. Surf. Sci.505, 144595 (2020), https://doi.org/10.1016/j.apsusc.2019.144595.Suche in Google Scholar
[51] Q. Huang, Y. Liu, T. Cai, X. Xia. J. Photochem. Photobiol. A375, 201 (2019).10.1016/j.jphotochem.2019.02.026Suche in Google Scholar
[52] X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu. Appl. Catal. B237, 43 (2018), https://doi.org/10.1016/j.apcatb.2018.05.070.Suche in Google Scholar
[53] R. Lotfi, M. Naguib, D. E. Yilmaz, J. Nanda, A. C. T. van Duin. J. Mater. Chem. A6, 12733 (2018), https://doi.org/10.1039/c8ta01468j.Suche in Google Scholar
[54] Z. Zou, J. Ye, K. Sayama, H. Arakawa. Nature414, 625 (2001), https://doi.org/10.1038/414625a.Suche in Google Scholar PubMed
[55] A. El-Sayed, N. Atef, A. H. Hegazy, K. R. Mahmoud, R. M. A. Hameed, N. K. Allam. Sol. Energy144, 445 (2017), https://doi.org/10.1016/j.solener.2017.01.056.Suche in Google Scholar
[56] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming. J. Electrochem. Soc.152, J23 (2005).10.1149/1.1856988Suche in Google Scholar
[57] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov. J. Am. Chem. Soc.127, 5308 (2005), https://doi.org/10.1021/ja0504690.Suche in Google Scholar PubMed
[58] J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, I. Chorkendorff. Faraday Discuss.140, 219 (2009), https://doi.org/10.1039/b803857k.Suche in Google Scholar PubMed
[59] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes. ACS Nano4, 1259 (2010), https://doi.org/10.1021/nn9015423.Suche in Google Scholar PubMed
[60] L. Hao, L. Kang, H. Huang, L. Ye, K. Han, S. Yang, H. Yu, M. Batmunkh, Y. Zhang, T. Ma. Adv. Mater.31, 1900546 (2019), https://doi.org/10.1002/adma.201900546.Suche in Google Scholar PubMed
[61] M. Ye, X. Wang, E. Liu, J. Ye, D. Wang. ChemSusChem11, 1606 (2018), https://doi.org/10.1002/cssc.201800083.Suche in Google Scholar PubMed
[62] X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou. J. Mater. Chem. A5, 12899 (2017), https://doi.org/10.1039/c7ta03557h.Suche in Google Scholar
[63] S. Cao, B. Shen, T. Tong, J. Fu, J. Yu. Adv. Funct. Mater.28, 1800136 (2018), https://doi.org/10.1002/adfm.201800136.Suche in Google Scholar
[64] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv. Appl. Catal. B268, 118738 (2020), https://doi.org/10.1016/j.apcatb.2020.118738.Suche in Google Scholar
[65] S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan. Nat. Commun.10, 676 (2019), https://doi.org/10.1038/s41467-019-08651-x.Suche in Google Scholar PubMed PubMed Central
[66] H. Pan, J. A. Ritter, P. B. Balbuena. Langmuir14, 6323 (1998), https://doi.org/10.1021/la9803373.Suche in Google Scholar
[67] Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti. Joule3, 2792 (2019), https://doi.org/10.1016/j.joule.2019.08.011.Suche in Google Scholar
[68] D. V. Yandulov, R. R. Schrock. Science301, 76 (2003), https://doi.org/10.1126/science.1085326.Suche in Google Scholar PubMed
[69] L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A. Ozin. Joule2, 1055 (2018), https://doi.org/10.1016/j.joule.2018.04.017.Suche in Google Scholar
[70] C. H. Christensen, T. Johannessen, R. Z. Sørensen, J. K. Nørskov. Catal. Today111, 140 (2006), https://doi.org/10.1016/j.cattod.2005.10.011.Suche in Google Scholar
[71] M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong. Small Methods3, 1800388 (2019), https://doi.org/10.1002/smtd.201800388.Suche in Google Scholar
[72] A. J. Medford, M. C. Hatzell. ACS Catal.7, 2624 (2017), https://doi.org/10.1021/acscatal.7b00439.Suche in Google Scholar
[73] X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao. Mater. Horiz.5, 9 (2018), https://doi.org/10.1039/c7mh00557a.Suche in Google Scholar
[74] R. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang. ACS Catal.9, 9739 (2019).10.1021/acscatal.9b03246Suche in Google Scholar
[75] Y. Liao, J. Qian, G. Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H.-Y. Jiang, J. Tang. Appl. Catal. B273, 119054 (2020), https://doi.org/10.1016/j.apcatb.2020.119054.Suche in Google Scholar
[76] T. Hou, Q. Li, Y. Zhang, W. Zhu, K. Yu, S. Wang, Q. Xu, S. Liang, L. Wang. Appl. Catal. B273, 119072 (2020), https://doi.org/10.1016/j.apcatb.2020.119072.Suche in Google Scholar
[77] L. M. Azofra, N. Li, D. R. MacFarlane, C. Sun. Energy Environ. Sci.9, 2545 (2016), https://doi.org/10.1039/c6ee01800a.Suche in Google Scholar
[78] J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li. Adv. Mater.30, 1705369 (2018), https://doi.org/10.1002/adma.201705369.Suche in Google Scholar PubMed
[79] Q. Tang, Z. Zhou, P. Shen. J. Am. Chem. Soc.134, 16909 (2012), https://doi.org/10.1021/ja308463r.Suche in Google Scholar PubMed
[80] Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen. Adv. Funct. Mater.29, 1806500 (2019), https://doi.org/10.1002/adfm.201806500.Suche in Google Scholar
[81] N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu. Chem. Rev.115, 10307 (2015), https://doi.org/10.1021/acs.chemrev.5b00267.Suche in Google Scholar PubMed
[82] V. Mauchamp, M. Bugnet, E. P. Bellido, G. A. Botton, P. Moreau, D. Magne, M. Naguib, T. Cabioc’h, M. W. Barsoum. Phys. Rev. B89, 235428 (2014), https://doi.org/10.1103/physrevb.89.235428.Suche in Google Scholar
[83] D. B. Velusamy, J. K. El-Demellawi, A. M. El-Zohry, A. Giugni, S. Lopatin, M. N. Hedhili, A. E. Mansour, E. D. Fabrizio, O. F. Mohammed, H. N. Alshareef. Adv. Mater.31, 1807658 (2019), https://doi.org/10.1002/adma.201807658.Suche in Google Scholar PubMed
[84] K. Hantanasirisakul, Y. Gogotsi. Adv. Mater.30, 1804779 (2018), https://doi.org/10.1002/adma.201804779.Suche in Google Scholar PubMed
[85] M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki. Phys. Rev. B94, 125152 (2016), https://doi.org/10.1103/physrevb.94.125152.Suche in Google Scholar
[86] C. Si, J. Zhou, Z. Sun. ACS Appl. Mater. Interfaces7, 17510 (2015), https://doi.org/10.1021/acsami.5b05401.Suche in Google Scholar PubMed
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee