Abstract
Adsorption is one of the most widely used processes in physicochemical operations. To design an adsorbent for a specific adsorbate, it is important to understand the interactions between adsorbents and adsorbates, which are very important for both adsorption capacity and selectivity. Electrostatic interactions, hydrogen bonding, hydrophobic interactions, complexation, and precipitation are comprehensively discussed. Adjusting solution pH and ionic strength is an effective method to improve the adsorption, especially when electrostatic and hydrophobic interactions are main interactions. With the increase in ionic strength, the hydrophobic interactions between adsorbents and adsorbates increase, while the electrostatic interactions decrease.
Article note:
A collection of invited papers based on presentations at the 36th International Conference of Solution Chemistry (ICSC-36), held in Xining, China, 4–8 August 2019.
Funding source: Qinghai Provincial Science and Technology Project, China
Award Identifier / Grant number: 2019-ZJ-903
Award Identifier / Grant number: 2018-HZ-807
Award Identifier / Grant number: 2018-GX-121
Funding source: Thousand Talent Program of Qinghai Province
Funding source: Chinese Academy of Sciences
-
Funding: This work was financially supported by Qinghai Provincial Science and Technology Project, China (2019-ZJ-903, 2018-HZ-807, 2018-GX-121), Thousand Talent Program of Qinghai Province, China, Hundred Talent Program of Chinese Academy of Sciences.
References
[1] Z. Wu, K. Lee. Chem. Res. Chin. Univ. 20, 185 (2004).Search in Google Scholar
[2] Z. Wu, I.-S. Ahn, C.-H. Lee, J.-H. Kim, Y. G. Shul, K. Lee. Colloids Surf., A 240, 157 (2004).10.1016/j.colsurfa.2004.04.045Search in Google Scholar
[3] Z. Wu, H. Joo, I.-S. Ahn, J.-H. Kim, C.-K. Kim, K. Lee. J. Non-Cryst. Solids 342, 46 (2004).10.1016/j.jnoncrysol.2004.06.004Search in Google Scholar
[4] Z. Wu, H. Joo, T. G. Lee, K. Lee. J. Contr. Release 104, 497 (2005).10.1016/j.jconrel.2005.02.023Search in Google Scholar PubMed
[5] Y. Jiang, Z. Wu, L. You, H. Xiang. Colloids Surf., B 49, 55 (2006).10.1016/j.colsurfb.2006.02.012Search in Google Scholar PubMed
[6] Z. Wu, Y. Jiang, H. Xiang, L. You. J. Non-Cryst. Solids 352, 5498 (2006).10.1016/j.jnoncrysol.2006.09.008Search in Google Scholar
[7] Z. Wu, Y. Jiang, T. Kim, K. Lee. J. Contr. Release 119, 215 (2007).10.1016/j.jconrel.2007.03.001Search in Google Scholar PubMed
[8] Z. Wu, X. Wang, H. Liu, H. Zhang, J. D. Miller. Adv. Colloid Interface Sci. 235, 190 (2016).10.1016/j.cis.2016.06.005Search in Google Scholar PubMed
[9] R. Zhang, P. Somasundaran. Adv. Colloid Interface Sci. 123-126, 213 (2006).10.1016/j.cis.2006.07.004Search in Google Scholar PubMed
[10] X. Gao, Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Zhang, Z. Wu. Adsorpt. Sci. Technol. 31, 45 (2013).10.1260/0263-6174.31.1.45Search in Google Scholar
[11] Z. Wu, H. Xiang, T. Kim, M.-S. Chun, K. Lee. J. Colloid Interface Sci. 304, 119 (2006).10.1016/j.jcis.2006.08.055Search in Google Scholar PubMed
[12] Z. Wu, H. Joo, I.-S. Ahn, S. Haam, J.-H. Kim, K. Lee. Chem. Eng. J. 102, 277 (2004).10.1016/j.cej.2004.05.008Search in Google Scholar
[13] Z. Wu, H. Joo, K. Lee. Chem. Eng. J. 112, 227 (2005).10.1016/j.cej.2005.07.011Search in Google Scholar
[14] L. You, Z. Wu, T. Kim, K. Lee. J. Colloid Interface Sci. 300, 526 (2006).10.1016/j.jcis.2006.04.039Search in Google Scholar
[15] Z. Wu, L. You, H. Xiang, Y. Jiang. J. Colloid Interface Sci. 303, 346 (2006).10.1016/j.jcis.2006.08.018Search in Google Scholar
[16] T. Guo, S. Wang, X. Ye, H. Liu, X. Gao, Q. Li, M. Guo, Z. Wu. Desalination Water Treat. 51, 3954 (2013).10.1080/19443994.2013.795017Search in Google Scholar
[17] Z. Zachariah, R. M. Espinosa-Marzal, M. P. Heuberger. J. Colloid Interface Sci. 506, 263 (2017).10.1016/j.jcis.2017.07.039Search in Google Scholar
[18] J. Mähler, I. Persson. Inorg. Chem. 51, 425 (2012).10.1021/ic2018693Search in Google Scholar
[19] M. J. Rosen. Surfactants and Interfacial Phenomena, John Wiley & Sons, Hoboken, New Jersey (2004).10.1002/0471670561Search in Google Scholar
[20] X. Feng, G. E. Fryxell, L. Q. Wang. Science 276, 923 (1997).10.1126/science.276.5314.923Search in Google Scholar
[21] L. Bois, A. Bonhomme, A. Ribes. Colloids Surf., A 221, 221 (2003).10.1016/S0927-7757(03)00138-9Search in Google Scholar
[22] H. Liu, X. Ye, Q. Li, T. Kim, B. Qing, M. Guo, F. Ge, Z. Wu, K. Lee. Colloids Surf., A 341, 118 (2009).10.1016/j.colsurfa.2009.03.045Search in Google Scholar
[23] H. Zhang, T. Guo, Q. Li, H. Liu, X. Ye, Z. Wu. Adsorpt. Sci. Technol. 30, 449 (2012).10.1260/0263-6174.30.5.449Search in Google Scholar
[24] H. Zhang, Y. Hu, X. Ye, H. Liu, Q. Li, M. Guo, Z. Wu. Desalination Water Treat. 51, 3930 (2013).10.1080/19443994.2013.795006Search in Google Scholar
[25] H. Zhang, X. Gao, T. Guo, Q. Li, H. Liu, X. Ye, M. Guo, Z. Wu. Colloids Surf., A 386, 166 (2011).10.1016/j.colsurfa.2011.07.014Search in Google Scholar
[26] Z. Wu, J. Wu, H. Xiang, M.-S. Chun, K. Lee. Colloids Surf., A 279, 167 (2006).10.1016/j.colsurfa.2005.12.054Search in Google Scholar
[27] M. S. Chiou, H. Y. Li. Chemosphere 50, 1095 (2003).10.1016/S0045-6535(02)00636-7Search in Google Scholar
[28] M. Dogan, M. Alkan. Chemosphere 50, 517 (2003).10.1016/S0045-6535(02)00629-XSearch in Google Scholar
[29] N. Geffen, R. Semiat, M.S. Eisen, Y. Balazs, I. Katz, C. G. Dosoretz. J. Membr. Sci. 286, 45 (2006).10.1016/j.memsci.2006.09.019Search in Google Scholar
[30] H. Zhang, X. Gao, T. Guo, Q. Li, H. Liu, X. Ye, M. Guo, Z. Wu. Colloids Surf., A 386, 166 (2011).10.1016/j.colsurfa.2011.07.014Search in Google Scholar
[31] Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z. Wu. Chem. Eng. J. 228, 392 (2013).10.1016/j.cej.2013.04.116Search in Google Scholar
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Selected papers from the 36th International Conference on Solution Chemistry (ICSC-36)
- Conference papers
- Using computational chemistry to explore experimental solvent parameters – solvent basicity, acidity and polarity/polarizability
- Solution chemistry in the surface region of aqueous solutions
- Water confined in solutions of biological relevance
- Real-time in-situ 1H NMR of reactions in peptide solution: preaggregation of amyloid-β fragments prior to fibril formation
- Free energy profile of permeation of Entecavir through Hepatitis B virus capsid studied by molecular dynamics calculation
- Dielectric relaxation spectroscopy: an old-but-new technique for the investigation of electrolyte solutions
- Excess spectroscopy and its applications in the study of solution chemistry
- Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory
- Desymmetrization in geometry optimization: application to an ab initio study of copper(I) hydration
- Interactions between adsorbents and adsorbates in aqueous solutions
- Modeling vapor-liquid-liquid-solid equilibrium for acetone-water-salt system
- Apparent molar volumes of sodium arsenate aqueous solution from 283.15 K to 363.15 K at ambient pressure: an experimental and thermodynamic modeling study
- Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide
- Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions
- The structure and composition of solid complexes comprising of Nd(III), Ca(II) and D-gluconate isolated from solutions relevant to radioactive waste disposal
- Separation of phenols from oils using deep eutectic solvents and ionic liquids