Home Possible alternatives for using kraft lignin as activated carbon in pulp mills – a review
Article
Licensed
Unlicensed Requires Authentication

Possible alternatives for using kraft lignin as activated carbon in pulp mills – a review

  • Tatiana Aurora Condezo Castro ORCID logo EMAIL logo , Marcelo Cardoso , Ana Augusta Passos Rezende , Angélica de Cássia Oliveira Carneiro , Larissa Quartaroli and Cláudio Mudadu Silva
Published/Copyright: March 28, 2023
Become an author with De Gruyter Brill

Abstract

The uses of kraft lignin (KL), obtained from the black liquor (BL) in the pulping process, allow the production of activated carbon (AC), a product with high added value in the pulp mill. The AC can be used in three different sectors in a cellulose pulp mill: sectorial treatment of the cellulosic pulp bleaching filtrates; wastewater treatment; and in the treatment of water received by the mill. Thus, this article considers the steps in the production of AC, their types, and the advantages and challenges of its use in the kraft cellulose pulp mill as well as in other industries.


Corresponding author: Tatiana Aurora Condezo Castro, Department of Forest Engineering, Universidade Federal de Viçosa, Avenida P. H. Rolfs, sem número Campus Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil, E-mail:

Acknowledgments

This work has been supported by the following Brazilian research agencie: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflics of interest.

References

Abdel-Aziz, M.A., Younis, S.A., Moustafa, Y.M., and Khalil, M.M.H. (2019). Synthesis of recyclable carbon/lignin biocomposite sorbent for in-situ uptake of BTX contaminants from wastewater. J. Environ. Manag. 233: 459–470, https://doi.org/10.1016/j.jenvman.2018.12.044.Search in Google Scholar PubMed

Acemioglu, B., Samil, A., Alma, M.H., and Gundogan, R. (2003). Copper (II) removal from aqueous solution by organosolv lignin and its recovery. J. Appl. Polym. Sci. 89: 1537–1541, https://doi.org/10.1002/app.12251.Search in Google Scholar

Ademiluyi, F.T. and David-West, E.O. (2012). Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials. ISRN Chem. Eng. 2012: 1–5, https://doi.org/10.5402/2012/674209.Search in Google Scholar

Adesida, A.A., Carrier, A., Adams, M., Walker, T.R., Oakes, K., Nganou, C., Fahad, M., and Zhang, X. (2022). Simultaneous degradation of persistent organic pollutants and heavy metal removal via an electrochemical filtration system: a case study on a pulp mill wastewater effluent. Case Stud. Chem. Environ. Eng. 6: 100258, https://doi.org/10.1016/j.cscee.2022.100258.Search in Google Scholar

Ahmida, K., Darmoon, M., Al-tohami, F., Erhayem, M., and Zidan, M. (2015). Effect of physical and chemical preparation on characteristics of activated carbon from agriculture solid waste and their potential application. Int. Conf. Chem. Civ. Environ. Eng 83–87, https://doi.org/10.15242/IICBE.C0615015.Search in Google Scholar

Akiba, N., Omori, A.T., and Gaubeur, I. (2022). Kraft lignin and its derivates – a study on the adsorption of mono and multielement metals, potential use for noble metal recycling and an alternative material for solid base catalyst. Chemosphere 308: 136538, https://doi.org/10.1016/j.chemosphere.2022.136538.Search in Google Scholar PubMed

Alvarino, T., Komesli, O., Suarez, S., Lema, J.M., and Omil, F. (2016). The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants. J. Hazard Mater. 308: 29–36, https://doi.org/10.1016/j.jhazmat.2016.01.040.Search in Google Scholar PubMed

Aly-Eldeen, M.A., El-Sayed, A.A.M., Salem, D.M.S.A., and Zokm, G.M. El. (2018). The uptake of Eriochrome Black T dye from aqueous solutions utilizing waste activated sludge: adsorption process optimization using factorial design. Egypt. J. Aquat. Res. 44: 179–186, https://doi.org/10.1016/j.ejar.2018.09.001.Search in Google Scholar

Araujo, D.M., Yoshida, M.I., Stapelfeldt, F., Carvalho, C.F., Donnici, C.L., and Kastner, G.F. (2009). Estudos comparativos entre carvão ativado e resina de troca iônica para adsorção de ouro, cobre e ferro. Rev. Esc. Minas. 62: 463–468, https://doi.org/10.1590/s0370-44672009000400008.Search in Google Scholar

Asimakopoulos, G., Baikousi, M., Constantinos, S., Bourlinos, A.B., Zboril, R., and Karakassides, M.A. (2021). Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the “Posidonia oceanica” seagrass. J. Hazard Mater. 405: 124274, https://doi.org/10.1016/j.jhazmat.2020.124274.Search in Google Scholar PubMed

Baloo, L., Isa, M.H., Sapari, N.B., Jagaba, A.H., Wei, L.J., Yavari, S., Razali, R., and Vasu, R. (2021). Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alex. Eng. J. 60: 5611–5629, https://doi.org/10.1016/j.aej.2021.04.044.Search in Google Scholar

Barbier, S. and Hamel, J. (2018). Lignin innovations. FPInnovation: 1–17.Search in Google Scholar

Bedia, J., Rodríguez-Mirasol, J., and Cordero, T. (2007). Water vapour adsorption on lignin-based activated carbons. J. Chem. Technol. Biotechnol. 83: 548–557, https://doi.org/10.1002/jctb.1698.Search in Google Scholar

Benali, M., Périn-Levasseur, Z., Savulescu, L., Kouisni, L., Jemaa, N., Kudra, T., and Paleologou, M. (2014). Implementation of lignin-based biorefinery into a Canadian softwood kraft pulp mill: optimal resources integration and economic viability assessment. Biomass Bioenergy 67: 473–482, https://doi.org/10.1016/j.biombioe.2013.08.022.Search in Google Scholar

Bergna, D., Varila, T., Romar, H., and Lassi, U. (2018). Comparison of the properties of activated carbons produced in one-stage and two-stage processes. J. Carbon Res. 4: 1–10, https://doi.org/10.3390/c4030041.Search in Google Scholar

Berlin, A. and Balakshin, M. (2014). Industrial lignins: analysis, properties, and applications. Bioenergy Res. Adv. Appl. 315–336, https://doi.org/10.1016/B978-0-444-59561-4.00018-8.Search in Google Scholar

Bernardo, M., Lapa, N., Matos, I., and Fonseca, I. (2016). Critical discussion on activated carbons from bio-wastes: environmental risk assessment. Boletín del Grup. Español del Carbón 40: 18–21.Search in Google Scholar

Blanco, F., Vilanova, X., Fierro, V., Celzard, A., Ivanov, P., Llobet, E., Cañellas, N., Ramírez, J.L., and Correig, X. (2008). Fabrication and characterisation of microporous activated carbon-based pre-concentrators for benzene vapours. Sensor. Actuator. B 132: 90–98, https://doi.org/10.1016/j.snb.2008.01.016.Search in Google Scholar

Brazil, T.R., Baldan, M.R., Massi, M., and Rezende, M.C. (2017). Structural behavior of coal obtained from Kraft lignin at different carbonizing rates. Mater. Today Proc. 4: 11617–11623, https://doi.org/10.1016/j.matpr.2017.09.073.Search in Google Scholar

Brazil, T.R., Gonçalves, M., dos Anjos, E.G.R., de Oliveira Junior, M.S., and Rezende, M.C. (2022a). Microwave-assisted production of activated carbon in an adapted domestic oven from lignocellulosic waste. Biomass Convers. Biorefinery: 0123456789, https://doi.org/10.1007/s13399-021-02192-4.Search in Google Scholar

Brazil, T.R., Gonçalves, M., Junior, M.S.O., and Rezende, M.C. (2020). A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes. Microporous Mesoporous Mater. 308: 110485, https://doi.org/10.1016/j.micromeso.2020.110485.Search in Google Scholar

Brazil, T.R., Gonçalves, M., Junior, M.S.O., and Rezende, M.C. (2022b). Sustainable process to produce activated carbon from Kraft lignin impregnated with H3PO4 using microwave pyrolysis. Biomass Bioenergy 156: 106333, https://doi.org/10.1016/j.biombioe.2021.106333.Search in Google Scholar

Brazil, T.R., Junior, M.S.O., Baldan, M.R., Massi, M., and Rezende, M.C. (2018). Effect of different superficial treatments on structural, morphological and superficial area of Kraft lignin based charcoal. Vib. Spectrosc. 99: 130–136, https://doi.org/10.1016/j.vibspec.2018.08.021.Search in Google Scholar

CABOT (2021). Activated carbon, Available at: https://www.cabotcorp.com/solutions/products-plus/activated-carbon.Search in Google Scholar

Cabrera, M.N. (2017). Pulp mill wastewater: characteristics and treatment. Biol. Wastewater Treat. Resour. Recover. 119–139, https://doi.org/10.5772/67537.Search in Google Scholar

Cardoso, M. (1998). Análise da unidade de recuperação do licor negro de eucalipto no processo “kraft”, avaliando alternativas de processamento, Thesis, Universidade Federal de Viçosa, p. 171.Search in Google Scholar

Carrott, P.J.M., Carrott, M.M.L.R., Suhas, Mourão, P.A.M., Guerrero, C.I., and Delgado, L.A. (2008a). Reactivity of Cork and lignin for the production of activated carbons. Mater. Sci. Forum 587–588: 618–622, https://doi.org/10.4028/www.scientific.net/msf.587-588.618.Search in Google Scholar

Carrott, P.J.M., Suhas, Ribeiro, M.M.L.C., Guerrero, C.I., and Delgado, L.A. (2008b). Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. J. Anal. Appl. Pyrolysis 82: 264–271, https://doi.org/10.1016/j.jaap.2008.04.004.Search in Google Scholar

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G., and Almeida, V.C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174: 117–125, https://doi.org/10.1016/j.cej.2011.08.058.Search in Google Scholar

Cecen, F. and Aktas, O. (2011). Activated carbon for water and wastewater treatment. Wiley VCH, Weinheim, Germany.Search in Google Scholar

Chairman, D.S.J., Williamson, I.A., Broadbent, M.M., Schmidtlein, R.K., and Kearns, J.E. (2018). Certain activated carbon from China, Second Review 4797. U.S. International Trade Commission, pp. 1–28. https://www.usitc.gov/publications/701_731/pub4797.pdf.Search in Google Scholar

Chaudhary, M., Suhas, Kushwaha, S., Chaudhary, S., Tyagi, I., Dehghani, M.H., Inbaraj, B.S., Goscianska, J., and Sharma, M. (2022). Studies on the removal of phenol and nitrophenols from water by activated carbon developed from demineralized kraft lignin. Agronomy 12: 1–19, https://doi.org/10.3390/agronomy12102564.Search in Google Scholar

Chaudhary, M., Suhas, Singh, R., Tyagi, I., Ahmed, J., Chaudhary, S., and Kushwaha, S. (2021a). Microporous activated carbon as adsorbent for the removal of noxious anthraquinone acid dyes: role of adsorbate functionalization. J. Environ. Chem. Eng. 9: 106308, https://doi.org/10.1016/j.jece.2021.106308.Search in Google Scholar

Chaudhary, M., Suhas, Singh, R., Yilmaz, M., Chaudhary, S., and Kushwaha, S. (2021b). Role of the similar molecular weight dyes on the adsorption by activated carbon. Desalination Water Treat. 244: 343–354, https://doi.org/10.5004/dwt.2021.27953.Search in Google Scholar

Chen, P., Zhang, Q., Shu, R., Xu, Y., Ma, L., and Wang, T. (2017). Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour. Technol. 226: 125–131, https://doi.org/10.1016/j.biortech.2016.12.030.Search in Google Scholar PubMed

Chu, S., Subrahmanyam, A.V., and Huber, G.W. (2013). The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chem. 15: 125–136, https://doi.org/10.1039/c2gc36332a.Search in Google Scholar

Colodette, J.L. and Gomes, F.J. (2015). Branqueamento de Polpa Celulosica. Editora UFV, Viçosa.Search in Google Scholar

Correa, C.R., Otto, T., and Kruse, A. (2017). Influence of the biomass components on the pore formation of activated carbon. Biomass Bioenergy 97: 53–64, https://doi.org/10.1016/j.biombioe.2016.12.017.Search in Google Scholar

Cotoruelo, L.M., Marque, D., Rodríguez-Mirasol, José, Cordero, T., and Rodriguez, J.J. (2007a). Adsorption of aromatic compounds on activated carbons from lignin: kinetic study. Ind. Eng. Chem. Res. 46: 2853–2860, https://doi.org/10.1021/ie061445k.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Díaz, F.J., Rodríguez-Mirasol, J., Cordero, T., and Rodríguez, J.J. (2007b). Activated carbons from lignin: their application in liquid phase adsorption. Separ. Sci. Technol. 42: 3363–3389, https://doi.org/10.1080/01496390701626800.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Díaz, F.J., Rodríguez-Mirasol, J., Rodríguez, J.J., and Cordero, T. (2010). Equilibrium and kinetic study of Congo red adsorption onto lignin-based activated carbons. Transport Porous Media 83: 573–590, https://doi.org/10.1007/s11242-009-9460-8.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Díaz, F.J., Rodríguez-Mirasol, J., Rodríguez, J.J., and Cordero, T. (2011a). Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environ. Prog. Sustain. Energy 00: 1–11.10.1002/ep.10560Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Díaz, F.J., Rodríguez-Mirasol, J., Rodríguez, J.J., and Cordero, T. (2012). Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem. Eng. J. 184: 176–183, https://doi.org/10.1016/j.cej.2012.01.026.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Leiva, A., Rodríguez-Mirasol, J., and Cordero, T. (2011b). Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons. Adsorption 17: 539–550, https://doi.org/10.1007/s10450-010-9319-x.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Rodríguez-Mirasol, J., Cordero, T., and Rodríguez, J.J. (2007c). Adsorption of aromatic compounds on activated carbons from lignin: equilibrium and thermodynamic study. Ind. Eng. Chem. Res. 46: 4982–4990, https://doi.org/10.1021/ie061415h.Search in Google Scholar

Cotoruelo, L.M., Marqués, M.D., Rodríguez-Mirasol, J., Rodríguez, J.J., and Cordero, T. (2009). Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate: equilibrium and kinetic studies. J. Colloid Interface Sci. 332: 39–45, https://doi.org/10.1016/j.jcis.2008.12.031.Search in Google Scholar PubMed

Cotoruelo, L.M., Marqués, M.D., Rodríguez-Mirasol, J., Rodríguez, J.J., and Cordero, T. (2011c). Cationic dyes removal by multilayer adsorption on activated carbons from lignin. J. Porous Mater. 18: 693–702, https://doi.org/10.1007/s10934-010-9428-7.Search in Google Scholar

da Mata, R.A., Morais, I.L.H., and Silva, C.M. (2020). Characterization of thermophilic aerobic granular sludge for the treatment of bleached kraft pulp mill effluent. Bioresources 15: 7191–7206, https://doi.org/10.15376/biores.15.3.7191-7206.Search in Google Scholar

de Moraes, N.P., Boldrin, F.H.C., Campos, T.M.B., Thim, G.P., Lianqing, Y., de Vasconcelos Lanza, M.R., and Rodrigues, L.A. (2023). Black-wattle tannin/kraft lignin H3PO4-activated carbon xerogels as excellent and sustainable adsorbents. Int. J. Biol. Macromol. 227: 58–70, https://doi.org/10.1016/j.ijbiomac.2022.12.125.Search in Google Scholar PubMed

Demuner, I.F., Colodette, J.L., Demuner, A.J., and Jardim, C.M. (2019). Biorefinery review: wide-reaching products through kraft lignin. Bioresources 14: 7543–7581, https://doi.org/10.15376/biores.14.3.demuner.Search in Google Scholar

Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R., and Xu, C. (2020). Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renew. Sustain. Energy Rev. 123: 109768, https://doi.org/10.1016/j.rser.2020.109768.Search in Google Scholar

Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., and Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan Inst. Chem. Eng. 53: 112–121, https://doi.org/10.1016/j.jtice.2015.02.025.Search in Google Scholar

Egbosiuba, T.C., Abdulkareem, A.S., Kovo, A.S., Afolabi, E.A., Tijani, J.O., Auta, M., and Roos, W.D. (2020). Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics. Chem. Eng. Res. Des. 153: 315–336, https://doi.org/10.1016/j.cherd.2019.10.016.Search in Google Scholar

Feng, J., Zhu, H., Xu, Y., Jiang, J., and Pan, H. (2021). Preparation and characterization of high-performance activated carbon from papermaking black-liquor at low temperature. J. Anal. Appl. Pyrolysis 159: 105292, https://doi.org/10.1016/j.jaap.2021.105292.Search in Google Scholar

Ferrández-Gómez, B., Cazorla-Amorós, D., and Morallón, E. (2021). Feasibility of electrochemical regeneration of activated carbon used in drinking water treatment plant . Reactor configuration design at a pilot scale. Process Saf. Environ. Protect. 148: 846–857, https://doi.org/10.1016/j.psep.2021.02.007.Search in Google Scholar

Fierro, C.M., Gorka, J., Zazo, J.A., Rodriguez, J.J., Ludwinowicz, J., and Jaroniec, M. (2013). Colloidal templating synthesis and adsorption characteristics of microporous – mesoporous carbons from Kraft lignin. Carbon 62: 233–239, https://doi.org/10.1016/j.carbon.2013.06.012.Search in Google Scholar

Fierro, V., Schuurman, Y., and Mirodatos, C. (2007a). Simultaneous determination of intrinsic adsorption and diffusion of n-butane in activated carbons by using the TAP reactor. Stud. Surf. Sci. Catal. 160: 241–247.10.1016/S0167-2991(07)80032-2Search in Google Scholar

Fierro, V., Torne-Fernández, V., and Celzard, A. (2007b). Methodical study of the chemical activation of Kraft lignin with KOH and NaOH. Microporous Mesoporous Mater. 101: 419–431, https://doi.org/10.1016/j.micromeso.2006.12.004.Search in Google Scholar

Fierro, V., Torné-Fernández, V., and Celzard, A. (2006). Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Microporous Mesoporous Mater. 92: 243–250, https://doi.org/10.1016/j.micromeso.2006.01.013.Search in Google Scholar

Fierro, V., Torné-Fernández, V., Celzard, A., and Montané, D. (2007c). Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid. J. Hazard Mater. 149: 126–133, https://doi.org/10.1016/j.jhazmat.2007.03.056.Search in Google Scholar PubMed

Fierro, V., Torné-Fernández, V., Montané, D., and Celzard, A. (2005). Study of the decomposition of kraft lignin impregnated with orthophosphoric acid. Thermochim. Acta 433: 142–148, https://doi.org/10.1016/j.tca.2005.02.026.Search in Google Scholar

Fierro, V., Torné-Fernández, V., Montané, D., and Celzard, A. (2008). Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 111: 276–284, https://doi.org/10.1016/j.micromeso.2007.08.002.Search in Google Scholar

Foo, K.Y. (2018). Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons. Process Saf. Environ. Protect. 116: 461–467, https://doi.org/10.1016/j.psep.2018.01.022.Search in Google Scholar

Foo, K.Y. and Hameed, B.H. (2012). Microwave-assisted regeneration of activated carbon. Bioresour. Technol. 119: 234–240, https://doi.org/10.1016/j.biortech.2012.05.061.Search in Google Scholar PubMed

Gabarrell, X., Font, M., Vicent, T., Caminal, G., Sarrà, M., and Blánquez, P. (2012). A comparative life cycle assessment of two treatment technologies for the Grey Lanaset G textile dye: biodegradation by Trametes versicolor and granular activated carbon adsorption. Int. J. Life Cycle Assess. 17: 613–624, https://doi.org/10.1007/s11367-012-0385-z.Search in Google Scholar

Gagliano, E., Falciglia, P.P., Zaker, Y., Karanfil, T., and Roccaro, P. (2021). Microwave regeneration of granular activated carbon saturated with PFAS. Water Res. 198: 117121, https://doi.org/10.1016/j.watres.2021.117121.Search in Google Scholar PubMed

Gamal, M. E., Mousa, H.A., El-naas, M.H., Zacharia, R., and Judd, S. (2018). Bio-regeneration of activated carbon: a comprehensive review. Sep. Purif. Technol. 197: 345–359, https://doi.org/10.1016/j.seppur.2018.01.015.Search in Google Scholar

Gao, Y., Yue, Q., and Gao, B. (2016). Comparison on physical , chemical, and adsorption properties of activated carbon derived from different solid wastes. Desalination Water Treat. 57: 15503–15514, https://doi.org/10.1080/19443994.2015.1075425.Search in Google Scholar

Gao, Y., Yue, Q., Gao, B., and Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: a review. Sci. Total Environ. 746: 141094, https://doi.org/10.1016/j.scitotenv.2020.141094.Search in Google Scholar PubMed

Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., and Wang, Y. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chem. Eng. J. 217: 345–353, https://doi.org/10.1016/j.cej.2012.09.038.Search in Google Scholar

García, A., Toledano, A., Serrano, L., Egüés, I., González, M., Marín, F., and Labidi, J. (2009). Characterization of lignins obtained by selective precipitation. Sep. Purif. Technol. 68: 193–198, https://doi.org/10.1016/j.seppur.2009.05.001.Search in Google Scholar

Gavrilescu, D., Puitel, A.C., Dutuc, G., and Craciun, G. (2012). Enviromental impact of pulp and paper mills. Environ. Eng. Manag. J. 11: 81–85, https://doi.org/10.30638/eemj.2012.012.Search in Google Scholar

GlobeNewswire (2021). The global activated carbon market, Available at: https://www.globenewswire.com/en/news-release/2021/05/24/2234748/0/en/Activated-Carbon-Market-to-Hit-USD-4-064-7-Million-by-2027-Increasing-Adoption-of-Powdered-Charcoal-in-Organic-Contaminants-to-Aid-Growth-Says-Fortune-Business-Insights.html.Search in Google Scholar

Gomez-Ceballos, V., Lara-Martín, P.A., Zapata-Benabithe, Z., Velasquez-Jimenez, J.A., and Quintana-Marin, G. (2021). Enhanced efficiency of a chemically modified hyperbranched Kraft lignin in the removal of pharmaceuticals from water at low microgram per liter levels. J. Environ. Chem. Eng. 9: 106244, https://doi.org/10.1016/j.jece.2021.106244.Search in Google Scholar

Gonzalez-Serrano, E., Cordero, T., Rodriguez-Mirasol, J., Cotoruelo, L., and Rodriguez, J.J. (2004). Removal of water pollutants with activated carbons prepared from H 3PO4 activation of lignin from kraft black liquors. Water Res. 38: 3043–3050, https://doi.org/10.1016/j.watres.2004.04.048.Search in Google Scholar PubMed

Gonzalez-Serrano, E., Cordero, T., Rodriguez-Mirasol, J., and Rodriguez, J.J. (1997). Development of porosity upon chemical activation of kraft lignin with ZnCl 2. Ind. Eng. Chem. Res. 36: 4832–4838, https://doi.org/10.1021/ie970261q.Search in Google Scholar

Gouvêa, A.de F.G. (2012). Produçao de briquete a partir da adição da lignina kraft com resíduo da indústria moveleira. Thesis, Universidade Federal de Viçosa, p. 101.Search in Google Scholar

Guo, J., Luo, Y., Lua, A.C., Chi, R., Chen, Y., Bao, X., and Xiang, S. (2007). Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon 45: 330–336, https://doi.org/10.1016/j.carbon.2006.09.016.Search in Google Scholar

Guo, J., Xu, W.S., Chen, Y.L., and Lua, A.C. (2005). Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid Interface Sci. 281: 285–290, https://doi.org/10.1016/j.jcis.2004.08.101.Search in Google Scholar PubMed

Guo, X., Zhang, S., and Shanquan, X. (2008). Adsorption of metal ions on lignin. J. Hazard Mater. 151: 134–142, https://doi.org/10.1016/j.jhazmat.2007.05.065.Search in Google Scholar PubMed

Guo, Y. and Rockstraw, D.A. (2006). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 44: 1464–1475, https://doi.org/10.1016/j.carbon.2005.12.002.Search in Google Scholar

Gustafsson, Å., Hale, S., Cornelissen, G., Sjöholm, E., and Gunnarsson, J.S. (2017). Activated carbon from kraft lignin: a sorbent for in situ remediation of contaminated sediments. Environ. Technol. Innov. 7: 160–168, https://doi.org/10.1016/j.eti.2016.11.001.Search in Google Scholar

Haq, I., Mazumder, P., and Kalamdhad, A.S. (2020). Recent advances in removal of lignin from paper industry wastewater and its industrial applications – a review. Bioresour. Technol. 312: 123636, https://doi.org/10.1016/j.biortech.2020.123636.Search in Google Scholar PubMed

Hayashi, J., Kazehaya, A., Muroyama, K., and Watkinson, A.P. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38: 1873–1878, https://doi.org/10.1016/s0008-6223(00)00027-0.Search in Google Scholar

Hernández-Abreu, A.B., Álvarez-Torrellas, S., Águeda, V.I., Larriba, M., Delgado, J.A., Calvo, P.A., and García, J. (2020). Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process. J. Environ. Manag. 266: 110604, https://doi.org/10.1016/j.jenvman.2020.110604.Search in Google Scholar PubMed

Hernández-Abreu, A.B., Ávarez-Torrellas, S., Rocha, R.P., Pereira, M.F.R., Águeda, V.I., Delgado, J.A., Larriba, M., García, J., and Figueiredo, J.L. (2021). Effective adsorption of the endocrine disruptor compound bisphenol a from water on surface-modified carbon materials. Appl. Surf. Sci. 552: 149513, https://doi.org/10.1016/j.apsusc.2021.149513.Search in Google Scholar

Hjaila, K., Baccar, R., Sarrà, M., Gasol, C.M., and Blánquez, P. (2013). Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment. J. Environ. Manag. 130: 242–247, https://doi.org/10.1016/j.jenvman.2013.08.061.Search in Google Scholar PubMed

Hu, Q.Y., Li, M., Wang, C., and Ji, M. (2015). Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. J. Hazard Mater. 295: 1–8, https://doi.org/10.1016/j.jhazmat.2015.03.070.Search in Google Scholar PubMed

Huling, S.G., Kan, E., and Wingo, C. (2009). Fenton-driven regeneration of MTBE-spent granular activated carbon – effects of particle size and iron amendment procedures. Appl. Catal. B Environ. 89: 651–658, https://doi.org/10.1016/j.apcatb.2009.02.002.Search in Google Scholar

Iovino, P., Canzano, S., Capasso, S., Erto, A., and Musmarra, D. (2015). A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons. Chem. Eng. J. 277: 360–367, https://doi.org/10.1016/j.cej.2015.04.097.Search in Google Scholar

Irani, M., Rad, L.R., Pourahmad, H., and Haririan, I. (2015). Optimization of the combined adsorption/photo-Fenton method for the simultaneous removal of phenol and paracetamol in a binary system. Microporous Mesoporous Mater. 206: 1–7, https://doi.org/10.1016/j.micromeso.2014.12.009.Search in Google Scholar

Jardim, J.M., Hart, P.W., Lucia, L., and Jameel, H. (2020). Insights into the potential of hardwood kraft lignin to be a green platform material for emergence of the biorefinery. Polymers 12: 1795, https://doi.org/10.3390/polym12081795.Search in Google Scholar PubMed PubMed Central

Jemaa, N., Thompson, R., Paleologou, M., and Berry, R.M. (1999). Non-process elements in the kraft cycle. Part I: sources, levels and process effects. Pulp Pap. 100: 47–51.Search in Google Scholar

Jiang, C., Wang, X., Hou, B., Hao, C., Li, X., and Wu, J. (2020). Construction of a lignosulfonate − Lysine hydrogel for the adsorption of heavy metal ions. J. Agric. Food Chem. 68: 3050–3060, https://doi.org/10.1021/acs.jafc.9b07540.Search in Google Scholar PubMed

Jin, X.-J., Yu, Z.-M., and Wu, Y. (2012). Preparation of activated carbon from lignin obtained by straw pulping by koh and K2CO3 Chemical activation. Cellul. Chem. Technol. 46: 79–85.Search in Google Scholar

Jusoh, A., Shiung, L.S., and Noor, M.J.M.M. (2007). A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206: 9–16, https://doi.org/10.1016/j.desal.2006.04.048.Search in Google Scholar

Kang, H., Park, S., and Rim, Y. (2006). Preparation of activated carbon from paper mill sludge by KOH-activation. Kor. J. Chem. Eng. 23: 948–953, https://doi.org/10.1007/s11814-006-0013-3.Search in Google Scholar

Kargi, F. and Pamukoglu, M.Y. (2004). Repeated fed-batch biological treatment of pre-treated landfill leachate by powdered activated carbon addition. Enzym. Microb. Technol. 34: 422–428, https://doi.org/10.1016/j.enzmictec.2003.11.016.Search in Google Scholar

Kazzaz, A.E. and Fatehi, P. (2020). Technical lignin and its potential modification routes: a mini-review. Ind. Crop. Prod. 154: 112732, https://doi.org/10.1016/j.indcrop.2020.112732.Search in Google Scholar

Kim, I.T., Sinha, T.K., Lee, J., Lee, Y., and Oh, J.S. (2021). Ultrasonic treatment: an acid-free green approach toward preparing high-performance activated carbon from lignin. Ind. Eng. Chem. Res. 60: 2439–2446, https://doi.org/10.1021/acs.iecr.0c03627.Search in Google Scholar

Kim, M.H., Jeong, I.T., Park, S.B., and Kim, J.W. (2019). Analysis of environmental impact of activated carbon production from wood waste. Environ. Eng. Res. 24: 117–126, https://doi.org/10.4491/eer.2018.104.Search in Google Scholar

Kouisni, L., Holt-Hindle, P., Maki, K., and Paleologou, M. (2012). The LignoForce System™: a new process for the production of high-quality lignin from black liquor. J. Sci. Technol. For. Prod. Process. 2: 1–10.Search in Google Scholar

Kriaa, A., Hamdi, N., and Srasra, E. (2010). Removal of Cu (II) from water pollutant with Tunisian activated lignin prepared by phosphoric acid activation. Desalination 250: 179–187, https://doi.org/10.1016/j.desal.2008.12.056.Search in Google Scholar

Kwiatkowski, M., Fierro, V., and Celzard, A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid Interface Sci. 486: 277–286, https://doi.org/10.1016/j.jcis.2016.10.003.Search in Google Scholar PubMed

Lake, M.A. and Blackburn, J.C. (2014). SLRP™ – an innovative lignin-recovery technology. Cellul. Chem. Technol. 48: 799–804.Search in Google Scholar

Lam, K.F., Fong, C.M., Yeung, K.L., and Mckay, G. (2008). Selective adsorption of gold from complex mixtures using mesoporous adsorbents. Chem. Eng. J. 145: 185–195, https://doi.org/10.1016/j.cej.2008.03.019.Search in Google Scholar

Larasati, A., Fowler, G.D., and Graham, N.J.D. (2021). Insights into chemical regeneration of activated carbon for water treatment. J. Environ. Chem. Eng. 9: 105555, https://doi.org/10.1016/j.jece.2021.105555.Search in Google Scholar

Ledesma, B., Román, S., Sabio, E., and Alvarez-Murillo, A. (2015). Improvement of spent activated carbon regeneration by wet oxidation processes. J. Supercrit. Fluids 104: 94–103, https://doi.org/10.1016/j.supflu.2015.05.007.Search in Google Scholar

Li, H. and McDonald, A.G. (2014). Fractionation and characterization of industrial lignins. Ind. Crop. Prod. 62: 67–76, https://doi.org/10.1016/j.indcrop.2014.08.013.Search in Google Scholar

Li, M., Liu, X., Sun, C., Stevens, L., and Liu, H. (2022). Synthesis and characterization of advanced bio-carbon materials from Kraft lignin with enhanced CO2 capture properties. J. Environ. Chem. Eng. 10: 107471, https://doi.org/10.1016/j.jece.2022.107471.Search in Google Scholar

Li, X. and Luo, X. (2013). Preparation of mesoporous activated carbon from kraft lignin by impregnation with H2SO4: a four parameters optimization study. Environ. Prog. Sustain. Energy 32: 1158–1163, https://doi.org/10.1002/ep.11716.Search in Google Scholar

Li, X., Luo, X., Duo, L., and Chen, K. (2016). Preparation and characterization of K2CO3 -activated kraft lignin carbon. Bioresources 11: 2096–2108, https://doi.org/10.15376/biores.11.1.2096-2108.Search in Google Scholar

Li, X., Xu, Q., Fu, Y., and Guo, Q. (2014). Preparation and characterization of activated carbon from kraft lignin via KOH activation. Environ. Prog. Sustain. Energy 33: 519–526, https://doi.org/10.1002/ep.11794.Search in Google Scholar

Lindholm-Lehto, P.C., Knuutinen, J.S., Ahkola, H.S.J., and Herve, S.H. (2015). Refractory organic pollutants and toxicity in pulp and paper mill wastewaters. Environ. Sci. Pollut. Res. 22: 6473–6499, https://doi.org/10.1007/s11356-015-4163-x.Search in Google Scholar PubMed

Ma, M., Ying, H., Cao, F., Wang, Q., and Ai, N. (2020). Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin. J. Chem. Eng. 28: 1069–1076, https://doi.org/10.1016/j.cjche.2020.01.016.Search in Google Scholar

Maldhure, A.V. and Ekhe, J.D. (2011). Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem. Eng. J. 168: 1103–1111, https://doi.org/10.1016/j.cej.2011.01.091.Search in Google Scholar

Malik, R., Ramteke, D.S., and Wate, S.R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag. 27: 1129–1138, https://doi.org/10.1016/j.wasman.2006.06.009.Search in Google Scholar PubMed

Mandeep, Gupta, G.K., Liu, H., and Shukla, P. (2019). Pulp and paper industry–based pollutants, their health hazards and environmental risks. Curr. Opin. Environ. Sci. Health 12: 48–56, https://doi.org/10.1016/j.coesh.2019.09.010.Search in Google Scholar

Mandeep, Kumar Gupta, G., and Shukla, P. (2020). Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresour. Technol. 297: 122496, https://doi.org/10.1016/j.biortech.2019.122496.Search in Google Scholar PubMed

Manjare, S.D. and Dhingra, K. (2019). Supercritical fluids in separation and purification: a review. Mater. Sci. Energy Technol. 2: 463–484, https://doi.org/10.1016/j.mset.2019.04.005.Search in Google Scholar

Markets and Markets (2021). Activated carbon market, Available at: https://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html?gclid=CjwKCAjwmeiIBhA6EiwA-uaeFffCVBSyoznih9F2ylVdznj1G3GoYgxBOkZMZbnCujI5Lz0VBjpPsRoCqFYQAvD_BwE.Search in Google Scholar

Markit, I. (2020). Activated carbon, Available at: https://ihsmarkit.com/products/activated-carbon-chemical-economics-handbook.html.Search in Google Scholar

Marsh, H. and Rodríguez-Reinoso, F. (2006a). Chapter 9: production and reference material. Act. Carbon: 454–508.10.1016/B978-008044463-5/50023-6Search in Google Scholar

Marsh, H. and Rodríguez-Reinoso, F. (2006b). Chapter 6: activation processes (chemical). Act. Carbon: 322–365.10.1016/B978-008044463-5/50020-0Search in Google Scholar

Marsh, H. and Rodríguez-Reinoso, F. (2006c). Chapter 8: applicability of activated carbon. Act. Carbon: 383–453.10.1016/B978-008044463-5/50022-4Search in Google Scholar

Martin, J. and Haggith, M. (2018). The state of the global paper industry. Environmental Paper Network, pp. 1–89. https://environmentalpaper.org/wp-content/uploads/2018/04/StateOfTheGlobalPaperIndustry2018_FullReport-Final-1.pdf.Search in Google Scholar

Mcquillan, R.V., Stevens, W., and Mumford, K.A. (2018). The electrochemical regeneration of granular activated carbons: a review. J. Hazard Mater. 355: 34–49, https://doi.org/10.1016/j.jhazmat.2018.04.079.Search in Google Scholar PubMed

Menéndez-Díaz, J.A. and Martín-Gullón, I. (2006). Types of carbon adsorbents and their production. Interface Sci. Technol. 7: 1–47.10.1016/S1573-4285(06)80010-4Search in Google Scholar

Mezzari, I.A. (2002). Utilizaçao de carvoes adsorventes para o tratamento de efluentes contendo pesticidas. Universidade Federal de Santa Catarina, Florianópolis, Brazil, pp. 1–117.Search in Google Scholar

Mirzaee, S.A., Bayati, B., Valizadeh, M.R., Gomes, H.T., and Noorimotlagh, Z. (2021). Adsorption of diclofenac on mesoporous activated carbons: physical and chemical activation , modeling with genetic programming and molecular dynamic simulation. Chem. Eng. Res. Des. 167: 116–128, https://doi.org/10.1016/j.cherd.2020.12.025.Search in Google Scholar

Mohan, D., Pittman, C.U., and Steele, P.H. (2006). Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent. J. Colloid Interface Sci. 297: 489–504, https://doi.org/10.1016/j.jcis.2005.11.023.Search in Google Scholar PubMed

Montané, D., Torné-Fernández, V., and Fierro, V. (2005). Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem. Eng. J. 106: 1–12, https://doi.org/10.1016/j.cej.2004.11.001.Search in Google Scholar

Mopoung, S. and Dejang, N. (2021). Activated carbon preparation from eucalyptus wood chips using continuous carbonization – steam activation process in a batch intermittent rotary kiln. Sci. Rep. 11: 13948, https://doi.org/10.1038/s41598-021-93249-x.Search in Google Scholar PubMed PubMed Central

Muhamad, M.H., Abdullah, S.R.S., Mohamad, A.B., Rahman, R.A., and Khadum, A.A.H. (2011). Treatment of adsorbable organic halides from recycled paper industry wastewater using a GAC-SBBR pilot plant system. J. Appl. Sci. 11: 2388–2393, https://doi.org/10.3923/jas.2011.2388.2393.Search in Google Scholar

Muniyandi, M., Govindaraj, P., and Bharath Balji, G. (2021). Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Mater. Today Proc. 47: 299–311, https://doi.org/10.1016/j.matpr.2021.04.468.Search in Google Scholar

Ng, C., Marshall, W.E., Rao, R.M., Bansode, R.R., and Losso, J.N. (2003). Activated carbon from pecan shell: process description and economic analysis. Ind. Crop. Prod. 17: 209–217, https://doi.org/10.1016/s0926-6690(03)00002-5.Search in Google Scholar

Norgren, M., Edlund, H., Wågberg, L., Lindström, B., and Annergren, G. (2001). Aggregation of kraft lignin derivatives under conditions relevant to the process, part I: phase behaviour. Colloids Surf. A Physicochem. Eng. Asp. 194: 85–96, https://doi.org/10.1016/s0927-7757(01)00753-1.Search in Google Scholar

OEC (2021). Carbón Activado; Materias Minerales Naturales Activadas; Negro de Origen Animal, Incluido El Agotado, Available at: https://oec.world/es/profile/hs92/activated-carbon-6380210?redirect=true.Search in Google Scholar

Olivares-Marín, M., Fernández-González, C., Macías-García, A., and Gómez-Serrano, V. (2012). Preparation of activated carbon from cherry stones by physical activation in air . Influence of the chemical carbonisation with H2SO4. J. Anal. Appl. Pyrolysis 94: 131–137, https://doi.org/10.1016/j.jaap.2011.11.019.Search in Google Scholar

Ong, S., Toorisaka, E., Hirata, M., and Hano, T. (2010). Adsorption and toxicity of heavy metals on activated sludge. Sci. Asia 36: 204–209.10.2306/scienceasia1513-1874.2010.36.204Search in Google Scholar

Pádua, V.L. (2006). Contribuição ao estudo da remoção de cianobactérias e microcontaminentes orgânicos por meio de técnicas de tratamento de água para consumo humano. Belo Horizonte 415–465.Search in Google Scholar

Pandey, M.P. and Kim, C.S. (2011). Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34: 29–41, https://doi.org/10.1002/ceat.201000270.Search in Google Scholar

Patel, A., Arkatkar, A., Singh, S., Rabbani, A., David, J., Medina, S., Shen, E., Habashy, M.M., Jadhav, D.A., Rene, E.R., et al.. (2021). Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere 282: 130881, https://doi.org/10.1016/j.chemosphere.2021.130881.Search in Google Scholar PubMed

Pathania, D., Sharma, S., and Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 10: S1445–S1451, https://doi.org/10.1016/j.arabjc.2013.04.021.Search in Google Scholar

El Qada, E.N., Allen, S.J., and Walker, G.M. (2006). Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem. Eng. J. 124: 103–110, https://doi.org/10.1016/j.cej.2006.08.015.Search in Google Scholar

Quezada, R., Silva, C.M., Rezende, A.A.P., Nilsson, L., and Manfredi, M. (2014). Membrane treatment of the bleaching plant (EPO) filtrate of a kraft pulp mill. Water Sci. Technol. 70: 843–850, https://doi.org/10.2166/wst.2014.304.Search in Google Scholar PubMed

Rabelo, S.C., Nakasu, P.S., Scopel, E., Araújo, M.F., Cardoso, L.H., and da Costa, A.C. (2023). Organosolv pretreatment for biorefineries: current status, perspectives, and challenges. Bioresour. Technol. 369: 128331, https://doi.org/10.1016/j.biortech.2022.128331.Search in Google Scholar PubMed

Ragan, S., Megonnell, N., Court, C., Leigh, M.E., Ragan, S., and Megonnell, N. (2011). Activated carbon from renewable resources – lignin. Cellul. Chem. Technol. 45: 527–531.Search in Google Scholar

Rahman, A., James, H., Shipwiisho, L., Uahengo, V., Johannes, S., Bhaskaruni, S.V.H.S., and Babu, S. (2019). Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: an environmentally benevolent approach. J. Clean. Prod. 237: 117689, https://doi.org/10.1016/j.jclepro.2019.117689.Search in Google Scholar

Ramirez-Gutierrez, C.F., Arias-Niquepa, R., Prías-Barragán, J.J., and Rodriguez-Garcia, M.E. (2020). Study and identification of contaminant phases in commercial activated carbons. J. Environ. Chem. Eng. 8: 103636, https://doi.org/10.1016/j.jece.2019.103636.Search in Google Scholar

Ridho, M.R., Agustiany, E.A., Rahmi Dn, M., Madyaratri, E.W., Ghozali, M., Restu, W.K., Falah, F., Rahandi Lubis, M.A., Syamani, F.A., Nurhamiyah, Y., et al.. (2022). Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv. Mater. Sci. Eng. 2022: 1–33, https://doi.org/10.1155/2022/1363481.Search in Google Scholar

Rodríguez-Mirasol, J., Bedia, J., Cordero, T., and Rodríguez, J.J. (2005). Influence of water vapor on the adsorption of VOCs on lignin ‐ based activated carbons influence of water vapor on the adsorption. Sep. Purif. Technol. 40: 3113–3135, https://doi.org/10.1080/01496390500385277.Search in Google Scholar

Rodríguez-Mirasol, J., Cordero, T., and Rodriguez, J.J. (1993a). Preparation and characterization of activated carbons from Eucalyptus kraft lignin. Carbon 31: 87–95, https://doi.org/10.1016/0008-6223(93)90160-c.Search in Google Scholar

Rodríguez-Mirasol, J., Cordero, T., and Rodríguez, J.J. (1993b). Activated carbons from CO2 partial gasification of eucalyptus kraft lignin. Energy Fuels 7: 133–138, https://doi.org/10.1021/ef00037a021.Search in Google Scholar

Román, S., Ledesma, B., Álvarez-murillo, A., and González, J.F. (2013). Comparative study on the thermal reactivation of spent adsorbents. Fuel Process. Technol. 116: 358–365, https://doi.org/10.1016/j.fuproc.2013.07.019.Search in Google Scholar

Rosas, J.M., Berenguer, R., Valero-Romero, M.J., Rodríguez-Mirasol, J., and Cordero, T. (2014). Preparation of different carbon materials by thermochemical conversion of lignin. Front. Mater. 1: 1–17, https://doi.org/10.3389/fmats.2014.00029.Search in Google Scholar

Rosas, J.M., Ruiz-Rosas, R., Rodríguez-Mirasol, J., and Cordero, T. (2017). Kinetic study of SO2 removal over lignin-based activated carbon. Chem. Eng. J. 307: 707–721, https://doi.org/10.1016/j.cej.2016.08.111.Search in Google Scholar

Sajjadi, S., Meknati, A., Lima, E.C., Dotto, G.L., Mendoza-Castillo, D.I., Anastopoulos, I., Alakhras, F., Unuabonah, E.I., Singh, P., and Hosseini-Bandegharaei, A. (2019). A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb (II) sorption. J. Environ. Manag. 236: 34–44, https://doi.org/10.1016/j.jenvman.2019.01.087.Search in Google Scholar PubMed

Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M.J., and Izquierdo, C. (2015a). Regeneration of carbonaceous adsorbents. Part II: chemical, microbiological and vacuum regeneration. Microporous Mesoporous Mater. 202: 277–296, https://doi.org/10.1016/j.micromeso.2014.08.019.Search in Google Scholar

Salvador, F., Martin-sanchez, N., Sanchez-hernandez, R., Sanchez-montero, M.J., and Izquierdo, C. (2015b). Regeneration of carbonaceous adsorbents. Part I: thermal regeneration. Microporous Mesoporous Mater. 202: 259–276, https://doi.org/10.1016/j.micromeso.2014.02.045.Search in Google Scholar

Santos, P.S.B.d., Erdocia, X., Gatto, D.A., and Labidi, J. (2014). Characterisation of Kraft lignin separated by gradient acid precipitation. Ind. Crop. Prod. 55: 149–154, https://doi.org/10.1016/j.indcrop.2014.01.023.Search in Google Scholar

Šćiban, M.B., Klašnja, M.T., and Antov, M.G. (2011). Study of the biosorption of different heavy metal ions onto Kraft lignin. Ecol. Eng. 37: 2092–2095, https://doi.org/10.1016/j.ecoleng.2011.08.006.Search in Google Scholar

Sciban, M. and Klasnja, M. (2004). Study of the adsorption of copper(II) ions from water onto wood sawdust, pulp and lignin. Adsorpt. Sci. Technol. 22: 195–206, https://doi.org/10.1260/0263617041503444.Search in Google Scholar

Sellaoui, L., Kehili, M., Lima, E.C., Thue, P.S., Bonilla-Petriciolet, A., Lamine, A.B., Dotto, G.L., and Erto, A. (2019). Adsorption of phenol on microwave-assisted activated carbons: modelling and interpretation. J. Mol. Liq. 274: 309–314, https://doi.org/10.1016/j.molliq.2018.10.098.Search in Google Scholar

Sellaoui, L., Lima, E.C., Dotto, G.L., and Lamine, A. Ben. (2017a). Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. J. Mol. Liq. 234: 375–381, https://doi.org/10.1016/j.molliq.2017.03.111.Search in Google Scholar

Sellaoui, L., Mechi, N., Lima, É.C., Dotto, G.L., and Ben Lamine, A. (2017b). Adsorption of diclofenac and nimesulide on activated carbon: statistical physics modeling and effect of adsorbate size. J. Phys. Chem. Solid. 109: 117–123, https://doi.org/10.1016/j.jpcs.2017.05.019.Search in Google Scholar

Shahrokhi-Shahraki, R., Benally, C., El-Din, M.G., and Park, J. (2021). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere 264: 128455, https://doi.org/10.1016/j.chemosphere.2020.128455.Search in Google Scholar PubMed

Shang, Y., Li, X., Yang, Y., Wang, N., Zhuang, X., and Zhou, Z. (2020). Optimized photocatalytic regeneration of adsorption-photocatalysis bifunctional composite saturated with Methyl Orange. J. Environ. Sci. 94: 40–51, https://doi.org/10.1016/j.jes.2020.03.044.Search in Google Scholar PubMed

Shao, L., Zhang, X., Chen, F., and Xu, F. (2017). Fast pyrolysis of Kraft lignins fractionated by ultrafiltration. J. Anal. Appl. Pyrolysis 128: 27–34, https://doi.org/10.1016/j.jaap.2017.11.003.Search in Google Scholar

Sharma, R.K., Wooten, J.B., Baliga, V.L., Lin, X., Chan, W.G., Hajaligol, M.R. (2004) Characterization of chars from pyrolysis of lignin. 83: 1469–1482, https://doi.org/10.1016/j.fuel.2003.11.015.Search in Google Scholar

Shawwa, A.R., Smith, D.W., and Sego, D.C. (2001). Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Res. 35: 745–749, https://doi.org/10.1016/s0043-1354(00)00322-5.Search in Google Scholar PubMed

Sidiqua, M.A. and Priya, V.S. (2021). Removal of yellow dye using composite binded adsorbent developed using natural clay and activated carbon from sapindus seed. Biocatal. Agric. Biotechnol. 33: 101965, https://doi.org/10.1016/j.bcab.2021.101965.Search in Google Scholar

Singh, A., Bahadur, D.P., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T., Srivastava, N., and Kumar, V.G. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: new insight. Bioresour. Technol. 343: 126154, https://doi.org/10.1016/j.biortech.2021.126154.Search in Google Scholar PubMed

Sivaraj, R., Rajendran, V., and Sangeetha, G.G. (2010). Preparation and characterization of activated carbons from parthenium biomass by physical and chemical activation techniques. e-Journal Chem 7: 1314–1319, https://doi.org/10.1155/2010/948015.Search in Google Scholar

Sotelo, J.L., Rodríguez, A., Álvarez, S., and García, J. (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem. Eng. Res. Des. 90: 967–974, https://doi.org/10.1016/j.cherd.2011.10.012.Search in Google Scholar

Spessato, L., Cazetta, A.L., Melo, S., Pezoti, O., Tami, J., Ronix, A., Fonseca, J.M., Martins, A.F., Silva, T.L., and Almeida, V.C. (2020). Synthesis of superparamagnetic activated carbon for paracetamol removal from aqueous solution. J. Mol. Liq. 300: 112282, https://doi.org/10.1016/j.molliq.2019.112282.Search in Google Scholar

Sponza, D.T. (2003). Application of toxicity tests into discharges of the pulp-paper industry in Turkey. Ecotoxicol. Environ. Saf. 54: 74–86, https://doi.org/10.1016/s0147-6513(02)00024-6.Search in Google Scholar PubMed

Sruthi, T., Gandhimathi, R., Ramesh, S.T., and Nidheesh, P.V. (2018). Stabilized land fill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere 210: 38–43, https://doi.org/10.1016/j.chemosphere.2018.06.172.Search in Google Scholar PubMed

Suganya, S. and Kumar, P.S. (2018). Evaluation of environmental aspects of brew waste-based carbon production and its disposal scenario. J. Clean. Prod. 202: 244–252, https://doi.org/10.1016/j.jclepro.2018.08.143.Search in Google Scholar

Suhas, Carrott, P.J.M., Carrott, M.M.L.R., and Ribeiro Carrott, M. (2007). Lignin – from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98: 2301–2312, https://doi.org/10.1016/j.biortech.2006.08.008.Search in Google Scholar PubMed

Suhas, Carrott, P.J.M., Ribeiro, M.M.L.C., Singh, R., Singh, L.P., and Chaudhary, M. (2017). An innovative approach to develop microporous activated carbons in oxidising atmosphere. J. Clean. Prod. 156: 549–555, https://doi.org/10.1016/j.jclepro.2017.04.078.Search in Google Scholar

Suhr, M., Klein, G., Kourti, I., Rodrigo Gonzalo, M., Giner Santonja, G., Roudier, S., and Delgado Sancho, L. (2015). Best available techniques (BAT) reference document for the production of pulp, paper and board. JRC Science and Policy Reports. ISBN 978-92-79-48167-3.Search in Google Scholar

Sumathi, S., Bhatia, S., Lee, K.T., and Mohamed, A.R. (2009). Optimization of microporous palm shell activated carbon production for flue gas desulphurization: experimental and statistical studies. Bioresour. Technol. 100: 1614–1621, https://doi.org/10.1016/j.biortech.2008.09.020.Search in Google Scholar PubMed

Sun, Y., Zhang, B., Zheng, T., and Wang, P. (2017). Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation. Chem. Eng. J. 320: 264–270, https://doi.org/10.1016/j.cej.2017.03.007.Search in Google Scholar

Thenmozhi, R. and Santhi, T. (2014). Characterization of activated Acacia nilotica seed pods for adsorption of Nickel from aqueous solution. Int. J. Environ. Sci. Technol. 12: 1677–1686, https://doi.org/10.1007/s13762-014-0531-1.Search in Google Scholar

Tobi, A.R., Dennis, J.O., Zaid, H.M., Adekoya, A.A., Yar, A., and Usman, F. (2019). Comparative analysis of physiochemical properties of physically activated carbon from palm bio-waste. J. Mater. Res. Technol. 8: 3688–3695, https://doi.org/10.1016/j.jmrt.2019.06.015.Search in Google Scholar

Tomani, P. (2010). The lignoboost process. Cellul. Chem. Technol. 44: 53–58.Search in Google Scholar

Torné-Fernández, V., Mateo-Sanz, J.M., Montané, D., and Fierro, V. (2009). Statistical optimization of the synthesis of highly microporous carbons by chemical activation of kraft lignin with NaOH. J. Chem. Eng. Data 54: 2216–2221, https://doi.org/10.1021/je800827n.Search in Google Scholar

Tran, H. and Vakkilainnen, E.K. (2016). The kraft recovery process. TAPPI (Tech. Assoc. Pulp Pap. Ind.) 1: 1–8.Search in Google Scholar

Ushiki, I., Tsuji, H., Takishima, S., Ito, Y., Sato, Y., and Inomata, H. (2020). Measurement and correlation of adsorption equilibria of propylene glycol monomethyl ether acetate on activated carbon in the presence of supercritical carbon dioxide. Fluid Phase Equil. 513: 112556, https://doi.org/10.1016/j.fluid.2020.112556.Search in Google Scholar

Vakkilainen, E. and Välimäki, E. (2009). Effect of lignin separation to black liquor and recovery boiler operation. TAPPI Eng. Pulping Environ. Conf. 2009: 1–18.Search in Google Scholar

Vaz Jr, S., Magalhães, W., Colnago, L.A., and Leal, W.G.O. (2020). Metodologia de Caracterização Físico-Química de Lignina Kraft. Bol. Pesqui. e Desenvolv. 22: 1–27.Search in Google Scholar

Wang, J., Han, Q., Lei, Y., Tang, M., Chen, L., Che, J., and Liu, Z. (2021). One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance. Huagong Xuebao/CIESC J. 72: 2826–2836.Search in Google Scholar

Wasewar, K.L., Prasad, B., and Gulipalli, S. (2009). Removal of selenium by adsorption onto granular activated carbon (GAC) and powdered activated carbon (PAC). Clean J. 37: 872–883, https://doi.org/10.1002/clen.200900188.Search in Google Scholar

Wu, Z., Zhu, W., Liu, Y., Zhou, L., Liu, P., and Xu, J. (2021). An integrated biological-electrocatalytic process for highly-efficient treatment of coking wastewater. Bioresour. Technol. 339: 125584, https://doi.org/10.1016/j.biortech.2021.125584.Search in Google Scholar PubMed

Yahya, M.A., Al-Qodah, Z., and Ngah, C.W.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sustain. Energy Rev. 46: 218–235, https://doi.org/10.1016/j.rser.2015.02.051.Search in Google Scholar

Yang, J., Yu, M., and Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. J. Ind. Eng. Chem. 21: 414–422, https://doi.org/10.1016/j.jiec.2014.02.054.Search in Google Scholar

Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., and Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 101: 6163–6169, https://doi.org/10.1016/j.biortech.2010.03.001.Search in Google Scholar PubMed

Yao, Y., Wang, L., Sun, L., Zhu, S., Huang, Z., Wangyang, L., Mao, Y., and Chen, W. (2013). Efficient removal of dyes using heterogeneous Fenton catalysts based on activated carbon fibers with enhanced activity. Chem. Eng. Sci. 101: 424–431, https://doi.org/10.1016/j.ces.2013.06.009.Search in Google Scholar

Yazidi, A., Sellaoui, L., Dotto, G.L., Bonilla-Petriciolet, A., Fröhlich, A.C., and Lamine, A. B. (2019). Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models. J. Mol. Liq. 283: 276–286, https://doi.org/10.1016/j.molliq.2019.03.101.Search in Google Scholar

Youssef, A.M., El-nabarawy, T., and Samra, S.E. (2004). Sorption properties of chemically-activated carbons 1. Sorption of cadmium (II) ions. Colloids Surf. A Physicochem. Eng. Asp. 235: 153–163, https://doi.org/10.1016/j.colsurfa.2003.12.017.Search in Google Scholar

Zaini, M.A., Zhi Lin, L., Hui Shu, T., Amano, Y., and Machida, M. (2021). Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons. Mater. Today Proc. 39: 917–921, https://doi.org/10.1016/j.matpr.2020.03.815.Search in Google Scholar

Zeng, S., Ma, Q., Zhang, S., Shen, C., Li, J., Zhao, H., Guo, D., Zhang, Y., and Yang, H. (2023). Evaluation of oxy-organosolv pretreatment on lignin extraction from wheat straw. Int. J. Biol. Macromol. 229: 861–872, https://doi.org/10.1016/j.ijbiomac.2022.12.301.Search in Google Scholar PubMed

Zhang, Z., Chen, Y., Wang, D., Yu, D., and Wu, C. (2023). Lignin-based adsorbents for heavy metals. Ind. Crop. Prod. 193: 116119, https://doi.org/10.1016/j.indcrop.2022.116119.Search in Google Scholar

Zhao, J., Zhang, W., Shen, D., Zhang, H., and Wang, Z. (2023). Preparation of porous carbon materials from black liquor lignin and its utilization as CO2 adsorbents. J. Energy Inst. 107: 101179, https://doi.org/10.1016/j.joei.2023.101179.Search in Google Scholar

Zhou, W., Meng, X., Ding, Y., Rajic, L., Gao, J., Qin, Y., and Alshawabked, A.N. (2019). “Self-cleaning” electrochemical regeneration of dye-loaded activated carbon. Electrochem. Commun. 100: 85–89, https://doi.org/10.1016/j.elecom.2019.01.025.Search in Google Scholar PubMed PubMed Central

Zhu, R., Xia, J., Zhang, H., Kong, F., Hu, X., Shen, Y., and Zhang, W.-H. (2021). Synthesis of magnetic activated carbons from black liquor lignin and Fenton sludge in a one-step pyrolysis for methylene blue adsorption. J. Environ. Chem. Eng. 9: 106538, https://doi.org/10.1016/j.jece.2021.106538.Search in Google Scholar

Received: 2022-11-21
Accepted: 2023-03-14
Published Online: 2023-03-28
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Biorefining
  3. Possible alternatives for using kraft lignin as activated carbon in pulp mills – a review
  4. Technical kraft lignin from coffee parchment
  5. Nitric acid-potassium hydroxide fractionation of rice straw: an integrated biorefinery initiative
  6. Paper technology
  7. The influence of fibrous suspension flow regimes on the formation of tissue paper manufactured from different furnish compositions
  8. Paper physics
  9. Assessment of paperboard large deformation at fold using digital image correlation technique
  10. Paper chemistry
  11. Response surface methodology optimization and antimicrobial activity of berberine modified trimethoprim carboxymethyl cellulose
  12. Packaging
  13. Addition of bentonite to cationic starch matrix for coating on kraftliner paper to improve grease resistance
  14. Recycling
  15. Changes in water-vapor-adsorption isotherms of pulp fibers and sheets during paper recycling, including drying of wet webs, and disintegration and sonication of dried sheets in water
  16. Determination of fines in recycled paper
  17. Disintegration of toilet papers used in shopping malls
  18. Nanotechnology
  19. Cryoslash as an effective pre-treatment to obtain nanofibrillated cellulose using ultra-fine friction grinder with kraft pulp
  20. Pre-treatment with calcium hydroxide and accelerated carbonation for cellulosic pulp fibrillation
  21. Chemical technology/modifications
  22. Study on manufacturing hot water-resistant PVOH coated paper by gas grafting palmitoyl chloride (II)–Control of palmitoyl chloride penetration by inorganic pigments coating
  23. Lignin
  24. Efficient and eco-friendly isolation and purification of lignin from black liquor with choline chloride-based deep eutectic solvents
  25. Misc
  26. Flocculation of alkyl ketene dimer and calcium carbonate on paper sizing and filling performance
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/npprj-2022-0099/html?lang=en
Scroll to top button