Startseite Mechanical and tribological behavior of a hybrid WC and Al2O3 reinforced Al–4Gr composite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical and tribological behavior of a hybrid WC and Al2O3 reinforced Al–4Gr composite

  • Ünal Değirmenci

    Dr. Ünal Değirmenci, born in 1988, works at Bingöl University, Department of Machinery and Metal Technologies, Bingöl, Turkey. He obtained his PhD in the mechanical engineering department at the University of Istanbul Technical University, Turkey, in 2019. His research interests are the modelling of hybrid composite materials and numerical and experimental analysis of the mechanical and tribological properties of materials.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The development of aluminum (Al) based composites has been an interesting subject to sustain technological developments in the defense, automotive, and aerospace industries. In this study, the microstructure, mechanical, and tribological performances of hybrid Al composites reinforced with fixed ratio (4 %) graphite (Gr) and two different reinforcement materials such as tungsten carbide (WC) and aluminum oxide (Al2O3) at different ratios were investigated. The impact of hybrid reinforcement and its ratios on the relative density value and hardness performance were investigated. The results of three different loads (1, 2, and 3 N) and three different sliding distances (200, 300, and 400 m) on wear performance were analyzed using Taguchi’s L18 experimental design. High relative density (94.39 %) and hardness (74.26) values were achieved by hot pressing. It has been determined that hybrid reinforcements have positive effects on wear performance. The lowest SWR value was recorded as 7.82 × 10−5 mm3/N.m in composite no Al-6. As the applied load raised, the friction coefficients decreased. On the other hand, the sliding distance and the increased applied load caused the temperatures to rise. With Al–4Gr/WC–Al2O3 composite material, a new AMMC has been presented to the literature, which has remarkable hardness and wear properties, and can show better ductility and machinability compared to equivalent materials.


Corresponding author: Ünal Değirmenci, Bingöl University, Technical Sciences Vocational School, 12000 Bingöl, Türkiye, E-mail:

Funding source: Bingöl Üniversitesi

Award Identifier / Grant number: BAP-TBMYO.2021.002

About the author

Ünal Değirmenci

Dr. Ünal Değirmenci, born in 1988, works at Bingöl University, Department of Machinery and Metal Technologies, Bingöl, Turkey. He obtained his PhD in the mechanical engineering department at the University of Istanbul Technical University, Turkey, in 2019. His research interests are the modelling of hybrid composite materials and numerical and experimental analysis of the mechanical and tribological properties of materials.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This paper was produced from project (Project no: BAP-TBMYO.2021.002) supported by The Scientific Research Projects Coordination Unit of Bingol University.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

[1] S. Suresh, D. Sudhakara, and B. Vinod, “Investigation on mechanical, wear, and machining characteristics of Al 7075/MWCNTs using the liquid state method,” Adv. Compos. Hybrid Mater., vol. 3, no. 2, pp. 243–254, 2020, https://doi.org/10.1007/s42114-020-00156-2.Suche in Google Scholar

[2] R. Ambigai and S. Prabhu, “Fuzzy logic algorithm based optimization of the tribological behavior of Al–Gr–Si3N4 hybrid composite,” Measurement, vol. 146, pp. 736–748, 2019, https://doi.org/10.1016/j.measurement.2019.07.025.Suche in Google Scholar

[3] U. Degirmenci, A. S. Erturk, M. B. Yurtalan, and M. Kirca, “Tensile behavior of nanoporous polyethylene reinforced with carbon-based nanostructures,” Comput. Mater. Sci., vol. 186, p. 109971, 2021, https://doi.org/10.1016/j.commatsci.2020.109971.Suche in Google Scholar

[4] P. S. Reddy, R. Kesavan, and B. Vijaya Ramnath, “Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite,” Silicon, vol. 10, no. 2, pp. 495–502, 2018, https://doi.org/10.1007/s12633-016-9479-8.Suche in Google Scholar

[5] U. Degirmenci and M. Kirca, “Carbon-based nano lattice hybrid structures: mechanical and thermal properties,” Phys. E Low-Dimens. Syst. Nanostruct., vol. 144, p. 115392, 2022, https://doi.org/10.1016/j.physe.2022.115392.Suche in Google Scholar

[6] Q. Zou, Z. Lou, Y. Guan, et al.., “Effect of Ti3SiC2 amount on microstructures and properties of TiAl matrix composites,” Tribol. Lett., vol. 70, no. 2, p. 37, 2022, https://doi.org/10.1007/s11249-022-01571-w.Suche in Google Scholar

[7] X. Jiang, J. Chen, H. Sun, and Z. Shao, “Influence of alumina whisker or nano-carbon contents on the microstructure and mechanical properties of CuZrTiAlNi refractory high entropy alloy composites,” Mater. Test., vol. 62, no. 7, pp. 678–688, 2020, https://doi.org/10.3139/120.111533.Suche in Google Scholar

[8] U. Degirmenci and M. Kirca, “Reverse non-equilibrium molecular dynamics simulations on the thermal conductivity of three-dimensional graphene nano-ribbon foams,” J. Phys. Chem. Solids, vol. 136, p. 109130, 2020, https://doi.org/10.1016/j.jpcs.2019.109130.Suche in Google Scholar

[9] S. Şap, A. Turgut, and M. Uzun, “Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites,” Ceram. Int., vol. 47, no. 21, pp. 29919–29929, 2021, https://doi.org/10.1016/j.ceramint.2021.07.165.Suche in Google Scholar

[10] M. I. Abd El Aal, “Effect of high-pressure torsion processing on the microstructure evolution and mechanical properties of consolidated micro size Cu and Cu–SiC powders,” Adv. Powder Technol., vol. 28, no. 9, pp. 2135–2150, 2017, https://doi.org/10.1016/j.apt.2017.05.020.Suche in Google Scholar

[11] W. Zhang, B. Lin, Y. Tang, Y. Wang, D. Zhang, and W. Zhang, “Microstructures and mechanical properties of high-performance nacre-inspired Al–Si/TiB2 composites prepared by freeze casting and pressure infiltration,” Ceram. Int., vol. 47, no. 12, pp. 16891–16901, 2021, https://doi.org/10.1016/j.ceramint.2021.03.001.Suche in Google Scholar

[12] P. Mo, J. Chen, C. Chen, et al.., “Study on the composition, microstructure and mechanical properties of PCBN composites synthesized by TiN–AlN–Ti combined with cBN,” J. Mater. Sci., vol. 57, no. 36, pp. 17481–17490, 2022, https://doi.org/10.1007/s10853-022-07726-3.Suche in Google Scholar

[13] A. Manikandan, M. S. Omkumar, and V. Mohanavel, “Mechanical and tribological characteristics of AA6082/ZrB2 composites,” Mater. Test., vol. 63, no. 10, pp. 962–965, 2021, https://doi.org/10.1515/mt-2020-0111.Suche in Google Scholar

[14] Y. Pazhouhanfar and B. Eghbali, “Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process,” Mater. Sci. Eng. A, vol. 710, pp. 172–180, 2018, https://doi.org/10.1016/j.msea.2017.10.087.Suche in Google Scholar

[15] S. V. Philip, J. D. R. Selvam, R. S. Rai, and P. M. Mashinini, “Microstructure Characterization of in-situ formed Al2O3–TiB2 AMCs particles on AA6061 aluminium matrix composites,” Mater. Today: Proc., vol. 16, pp. 574–578, 2019, https://doi.org/10.1016/j.matpr.2019.05.130.Suche in Google Scholar

[16] H. Xie, J. Zhang, F. Li, et al.., “Selective laser melting of SiCp/Al composites: densification, microstructure, and mechanical and tribological properties,” Ceram. Int., vol. 47, no. 21, pp. 30826–30837, 2021, https://doi.org/10.1016/j.ceramint.2021.07.263.Suche in Google Scholar

[17] J. Li, S. Lü, S. Wu, D. Zhao, F. Li, and W. Guo, “Effects of nanoparticles on the solution treatment and mechanical properties of nano-SiCp/Al–Cu composites,” J. Mater. Process. Technol., vol. 296, p. 117195, 2021, https://doi.org/10.1016/j.jmatprotec.2021.117195.Suche in Google Scholar

[18] K. C. Nayak and P. P. Date, “Physical simulation of hot rolling of powder metallurgy-based Al/SiC composite by plane strain multi stage compression,” Mater. Charact., vol. 173, p. 110954, 2021, https://doi.org/10.1016/j.matchar.2021.110954.Suche in Google Scholar

[19] W. Shi, H. Cao, A. Chen, et al.., “Effects of forging on the mechanical properties of B4Cp/Al composite with flaked Al and Al2O3 particles,” Mater. Test., vol. 64, no. 10, pp. 1450–1454, 2022, https://doi.org/10.1515/mt-2022-0185.Suche in Google Scholar

[20] M. Ayvaz and H. Cetinel, “Mechanical properties of Al–Cu/B4C and Al–Mg/B4C metal matrix composites,” Mater. Test., vol. 63, no. 4, pp. 350–355, 2021, https://doi.org/10.1515/mt-2020-0052.Suche in Google Scholar

[21] Y. Afkham, R. A. Khosroshahi, S. Rahimpour, C. Aavani, D. Brabazon, and R. T. Mousavian, “Enhanced mechanical properties of in situ aluminium matrix composites reinforced by alumina nanoparticles,” Arch. Civ. Mech. Eng., vol. 18, no. 1, pp. 215–226, 2018, https://doi.org/10.1016/j.acme.2017.06.011.Suche in Google Scholar

[22] P. Gurusamy, S. B. Prabu, and R. Paskaramoorthy, “Influence of processing temperatures on mechanical properties and microstructure of squeeze cast aluminum alloy composites,” Mater. Manuf. Process., vol. 30, no. 3, pp. 367–373, 2015, https://doi.org/10.1080/10426914.2014.973587.Suche in Google Scholar

[23] X. He, B. Lin, W. Zhang, H. Xiao, and W. Zhang, “Microstructures and enhanced mechanical properties of (Al3Ti+Al2O3)/Al–Si composites with co-continuous network structure prepared by pressure infiltration,” Ceram. Int., vol. 48, pp. 1–11, 2022, https://doi.org/10.1016/j.ceramint.2022.08.246.Suche in Google Scholar

[24] C. Zhou, M. Lv, Y. Zan, et al.., “Microstructure and mechanical properties of aluminum matrix composites produced by Al–La2O3 in-situ reaction,” Mater. Charact., vol. 188, p. 111887, 2022, https://doi.org/10.1016/j.matchar.2022.111887.Suche in Google Scholar

[25] Y. He, H. Xu, B. Jiang, Z. Ji, and M. Hu, “Microstructure, mechanical and tribological properties of (APC+B4C)/Al hybrid composites prepared by hydrothermal carbonized deposition on chips,” J. Alloys Compd., vol. 888, p. 161578, 2021, https://doi.org/10.1016/j.jallcom.2021.161578.Suche in Google Scholar

[26] Z. Gxowa-Penxa, P. Daswa, R. Modiba, M. N. Mathabathe, and A. S. Bolokang, “Development and characterization of Al–Al3Ni–Sn metal matrix composite,” Mater. Chem. Phys., vol. 259, p. 124027, 2021, https://doi.org/10.1016/j.matchemphys.2020.124027.Suche in Google Scholar

[27] L. U. Gezici, E. Özer, İ. Sarpkaya, and U. Çavdar, “The effect of SiC content on microstructural and tribological properties of sintered B4C and SiC reinforced Al–Cu–Mg–Si matrix hybrid composites,” Mater. Test., vol. 64, no. 4, pp. 502–512, 2022, https://doi.org/10.1515/mt-2021-2103.Suche in Google Scholar

[28] M. K. Gupta, “Analysis of tribological behavior of Al/Gr/MoS2 surface composite fabricated by friction stir process,” Carbon Lett., vol. 30, no. 4, pp. 399–408, 2020, https://doi.org/10.1007/s42823-019-00109-w.Suche in Google Scholar

[29] L. T and U. S. Mallik, “Dry sliding wear behavior of Al/Gr/SiC hybrid metal matrix composites by Taguchi techniques,” Mater. Today: Proc., vol. 4, no. 10, pp. 11175–11180, 2017, https://doi.org/10.1016/j.matpr.2017.08.084.Suche in Google Scholar

[30] S. H. Dhoria, V. Durga Prasada Rao, and K. Venkata Subbaiah, “Mechanical and wear behaviour of 6351 Al/Gr/SiC composites fabricated by squeeze casting,” Mater. Today: Proc., vol. 18, pp. 2107–2113, 2019, https://doi.org/10.1016/j.matpr.2019.06.326.Suche in Google Scholar

[31] P. Vignesh Kumar, C. Nithiyapathi, A. Daniel Das, and V. Preethi, “Development of Al–Gr–Ca hybrid composite for braking application,” Mater. Today: Proc., vol. 37, pp. 1982–1985, 2021, https://doi.org/10.1016/j.matpr.2020.07.491.Suche in Google Scholar

[32] A. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, “Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties,” Perspect. Sci., vol. 8, pp. 428–431, 2016, https://doi.org/10.1016/j.pisc.2016.04.096.Suche in Google Scholar

[33] V. K. Sharma, R. C. Singh, and R. Chaudhary, “Wear and friction behaviour of aluminium metal composite reinforced with graphite particles,” Int. J. Surf. Sci. Eng., vol. 12, nos. 5–6, pp. 419–432, 2018, https://doi.org/10.1504/IJSURFSE.2018.096753.Suche in Google Scholar

[34] O. O. Taiwo, L. O. Osobab, O. O. Adewunmic, S. O. Adeosun, and A. P. Popoolae, “A study on mechanical properties of aluminum-graphite and aluminum-graphite-zircon hybrid composites,” Assoc. Prof., vol. 48, no. 2, pp. 12–20, 2020.Suche in Google Scholar

[35] S. Arivukkarasan, V. Dhanalakshmi, B. Stalin, and M. Ravichandran, “Mechanical and tribological behaviour of tungsten carbide reinforced aluminum LM4 matrix composites,” Part. Sci. Technol., vol. 36, no. 8, pp. 967–973, 2018, https://doi.org/10.1080/02726351.2017.1331285.Suche in Google Scholar

[36] K. Sunil Kumar Reddy, M. Kannan, R. Karthikeyan, A. Sripad, and P. K. Jain, “Investigation of thermal and mechanical properties of Al7020/SiC/graphite hybrid metal matrix composites,” Mater. Today: Proc., vol. 26, pp. 2746–2753, 2020, https://doi.org/10.1016/j.matpr.2020.02.574.Suche in Google Scholar

[37] E. Sap, “Microstructure and mechanical effects of Co–Ti powder particles on Cu matrix composites,” Russ. J. Non-Ferrous Metals, vol. 62, no. 1, pp. 107–118, 2021, https://doi.org/10.3103/S1067821221010077.Suche in Google Scholar

[38] Ü. A. Usca, M. Uzun, M. Kuntoğlu, S. Şap, K. Giasin, and D. Y. Pimenov, “Tribological aspects, optimization and analysis of Cu–B–CrC composites fabricated by powder metallurgy,” Materials, vol. 14, no. 15, p. 4217, 2021, https://doi.org/10.3390/ma14154217.Suche in Google Scholar PubMed PubMed Central

[39] S. Suresh, G. H. Gowd, and M. L. S. D. Kumar, “Mechanical and wear behavior of Al 7075/Al2O3/SiC/mg metal matrix nanocomposite by liquid state process,” Adv. Compos. Hybrid Mater., vol. 2, no. 3, pp. 530–539, 2019, https://doi.org/10.1007/s42114-019-00101-y.Suche in Google Scholar

[40] T. P. Reddy, S. J. Kishore, P. C. Theja, and P. P. Rao, “Development and wear behavior investigation on aluminum-7075/B4C/fly ash metal matrix composites,” Adv. Compos. Hybrid Mater., vol. 3, no. 2, pp. 255–265, 2020, https://doi.org/10.1007/s42114-020-00145-5.Suche in Google Scholar

[41] V. V. Monikandan, P. K. Rajendrakumar, and M. A. Joseph, “High temperature tribological behaviors of aluminum matrix composites reinforced with solid lubricant particles,” Trans. Nonferrous Metals Soc. China, vol. 30, no. 5, pp. 1195–1210, 2020, https://doi.org/10.1016/S1003-6326(20)65289-X.Suche in Google Scholar

[42] K. Trinath, R. Aepuru, A. Biswas, M. Ramalinga Viswanathan, and R. Manu, “Study of self lubrication property of Al/SiC/graphite hybrid composite during Machining by using artificial neural networks (ANN),” Mater. Today: Proc., vol. 44, pp. 3881–3887, 2021, https://doi.org/10.1016/j.matpr.2020.12.927.Suche in Google Scholar

[43] J. B. Singh, W. Cai, and P. Bellon, “Dry sliding of Cu–15wt%Ni–8wt%Sn bronze: wear behaviour and microstructures,” Wear, vol. 263, no. 1, pp. 830–841, 2007, https://doi.org/10.1016/j.wear.2007.01.061.Suche in Google Scholar

[44] E. Sap and M. Uzun, “A study of the microstructure and properties of copper composites reinforced with Co–Ti,” Met. Sci. Heat Treat., vol. 63, nos. 9–10, pp. 558–563, 2022, https://doi.org/10.1007/s11041-022-00728-7.Suche in Google Scholar

[45] S. Arif, M. T. Alam, A. H. Ansari, M. A. Siddiqui, and M. Mohsin, “Study of mechanical and tribological behaviour of Al/SiC/ZrO hybrid composites fabricated through powder metallurgy technique,” Mater. Res. Express, vol. 4, no. 7, p. 076511, 2017, https://doi.org/10.1088/2053-1591/aa7b5f.Suche in Google Scholar

[46] G. Rajaram, S. Kumaran, T. Srinivasa Rao, and M. Kamaraj, “Studies on high temperature wear and its mechanism of Al–Si/graphite composite under dry sliding conditions,” Tribol. Int., vol. 43, no. 11, pp. 2152–2158, 2010, https://doi.org/10.1016/j.triboint.2010.06.004.Suche in Google Scholar

[47] S. Mahdavi and F. Akhlaghi, “Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites,” J. Mater. Sci., vol. 46, no. 5, pp. 1502–1511, 2011, https://doi.org/10.1007/s10853-010-4954-x.Suche in Google Scholar

[48] V. K. Anand, A. Aherwar, M. Mia, O. Elfakir, and L. Wang, “Influence of silicon carbide and porcelain on tribological performance of Al6061 based hybrid composites,” Tribol. Int., vol. 151, p. 106514, 2020, https://doi.org/10.1016/j.triboint.2020.106514.Suche in Google Scholar

[49] Ü. A. Usca, S. Şap, M. Uzun, K. Giasin, and D. Y. Pimenov, “Evaluation of mechanical and tribological aspect of self-lubricating Cu–6Gr composites reinforced with SiC–WC hybrid particles,” Nanomaterials-Basel, vol. 12, no. 13, p. 2154, 2022, https://doi.org/10.3390/nano12132154.Suche in Google Scholar PubMed PubMed Central

[50] P. Ravindran, K. Manisekar, P. Rathika, and P. Narayanasamy, “Tribological properties of powder metallurgy – processed aluminium self lubricating hybrid composites with SiC additions,” Mater. Des., vol. 45, pp. 561–570, 2013, https://doi.org/10.1016/j.matdes.2012.09.015.Suche in Google Scholar

[51] A. M. Hassan, A. Alrashdan, M. T. Hayajneh, and A. T. Mayyas, “Wear behavior of Al–Mg–Cu–based composites containing SiC particles,” Tribol. Int., vol. 42, no. 8, pp. 1230–1238, 2009, https://doi.org/10.1016/j.triboint.2009.04.030.Suche in Google Scholar

[52] J.-M. Lee, S.-B. Kang, and J. Han, “Dry sliding wear of MAO-coated A356/20vol.% SiCp composites in the temperature range 25–180 °C,” Wear, vol. 264, no. 1, pp. 75–85, 2008, https://doi.org/10.1016/j.wear.2007.01.044.Suche in Google Scholar

[53] A. Onat, “Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method,” J. Alloys Compd., vol. 489, no. 1, pp. 119–124, 2010, https://doi.org/10.1016/j.jallcom.2009.09.027.Suche in Google Scholar

[54] A. Onat, H. Akbulut, and F. Yilmaz, “Production and characterisation of silicon carbide particulate reinforced aluminium–copper alloy matrix composites by direct squeeze casting method,” J. Alloys Compd., vol. 436, no. 1, pp. 375–382, 2007, https://doi.org/10.1016/j.jallcom.2006.07.057.Suche in Google Scholar

[55] M. J. Ghazali, W. M. Rainforth, and H. Jones, “Dry sliding wear behaviour of some wrought, rapidly solidified powder metallurgy aluminium alloys,” Wear, vol. 259, no. 1, pp. 490–500, 2005, https://doi.org/10.1016/j.wear.2005.02.089.Suche in Google Scholar

[56] I. Manivannan, S. Ranganathan, and S. Gopalakannan, “Tribological behavior of aluminum nanocomposites studied by application of response surface methodology,” Adv. Compos. Hybrid Mater., vol. 2, no. 4, pp. 777–789, 2019, https://doi.org/10.1007/s42114-019-00131-6.Suche in Google Scholar

[57] E. Şap, “Investigation of mechanical properties of Cu/Mo–SiCp composites produced with P/M, and their wear behaviour with the Taguchi method,” Ceram. Int., vol. 47, no. 18, pp. 25910–25920, 2021, https://doi.org/10.1016/j.ceramint.2021.05.322.Suche in Google Scholar

Published Online: 2023-07-25
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2023-0040/html?lang=de
Button zum nach oben scrollen