Startseite Mathematik A note on the coprime power graph of groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on the coprime power graph of groups

  • Mohammed A. Mutar , Daniele Ettore Otera EMAIL logo und Adel Salim Tayyah
Veröffentlicht/Copyright: 9. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Some years ago, Shitov proved that the chromatic number of the power graph of semi-groups is at most countable, thus answering a question raised by Aalipour et al. about whether this statement holds for groups. Later, Dalal and Kumar proved that the chromatic number of the enhanced power graph of a group is also countable. In the line of these recent works, we first generalize the concept of power graphs to coprime power graph, and then we prove the same type of result for this generalization. Furthermore, we state a conjecture about their common relationship as graphs.

MSC 2010: 05C15; 05C25; 05C69
  1. (Communicated by Anatolij Dvurečenskij)

References

[1] Aalipour, G.—Akbari, S.—Cameron, P. J.—Nikandish, R.—Shaveisi F.: On the structure of the power graph and the enhanced power graph of a group, Electron. J. Comb. 24(3) (2017), P3.16.10.37236/6497Suche in Google Scholar

[2] Afkhami, F. M.—Jafarzadeh, A.—Khashyarmanesh, K.—Mohammadikhah, S.: On cyclic graphs of finite semigroups, Journal of Algebra and Its Applications, 13(7) (2014), Art. 1450035.10.1142/S0219498814500352Suche in Google Scholar

[3] Cameron, P. J.: The power graph of a finite group, II. Journal of Group Theory 13(6) (2010), 779-783.10.1515/jgt.2010.023Suche in Google Scholar

[4] Cameron, P. J.—Ghosh, S.: The power graph of a finite group. Discrete Math. 311 (2011), 1220-1222.10.1016/j.disc.2010.02.011Suche in Google Scholar

[5] Chakrabarty, I.—Ghosh, S.—Sen, M. K.: Undirected power graphs of semigroups, Semigroup Forum 78 (2009), 410-426.10.1007/s00233-008-9132-ySuche in Google Scholar

[6] Dalal S.—Kumar, J.: Chromatic number of the cyclic graph of infinite semigroup, Graphs and Combinatorics 36 (2020), 109-113.10.1007/s00373-019-02120-4Suche in Google Scholar

[7] Howie, J. M.: Fundamentals of Semigroup Theory, Oxford University Press, 1995.10.1093/oso/9780198511946.001.0001Suche in Google Scholar

[8] Kelarev, A. V.—Quinn, S. J.: A combinatorial property and power graphs of groups, Contrib. General Algebra 12 (2000), 229-235.Suche in Google Scholar

[9] Kelarev, A. V.—Quinn, S. J.: Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002), 16-26.10.1006/jabr.2001.9128Suche in Google Scholar

[10] Kelarev, A. V.—Quinn, S. J.: A combinatorial property and power graphs of semigroups, Comment. Math. Univ. Carolinae 45 (2004), 1-7.Suche in Google Scholar

[11] Shitov, Y.: Coloring the power graph of a semigroup, Graphs and Combinatorics 33 (2017), 485-487.10.1007/s00373-017-1773-8Suche in Google Scholar

Received: 2025-03-12
Accepted: 2025-04-22
Published Online: 2025-08-09
Published in Print: 2025-08-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0052/pdf
Button zum nach oben scrollen