Startseite Mathematik Proportion estimation in multistage pair ranked set sampling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Proportion estimation in multistage pair ranked set sampling

  • M. Mahdizadeh EMAIL logo
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Estimating the proportion of individuals having a disease in a given population is a common problem in medicine. This is simply done by drawing a random sample from the target population, and computing the proportion of positive results based on a suitable diagnostic test. In some situations, the number of quantified units is limited because measuring the variable of interest is difficult or expensive. In this setting, one can utilize alternative designs that allow achieving the desired precision level with a smaller sample size. Multistage pair ranked set sampling (MSPRSS) is such a design that can be used instead of simple random sampling. It is a rank-based sampling method that incorporates auxiliary information in order to collect an informative sample. This article deals with the proportion estimation in MSPRSS. Some results about the proposed estimator are proved. A simulation experiment and a real data set in the context of breast cancer are used to demonstrate the finite sample properties of the new estimator.



Acknowledgement

The author thanks the reviewers for carefully reading the manuscript and providing many constructive comments.

  1. Communicated by Gejza Wimmer

References

1 Al-Saleh, M. F.—Al-Omari, A. I.: Multistage ranked set sampling, J. Statist. Plann. Inference 102 (2002), 273–286.10.1016/S0378-3758(01)00086-6Suche in Google Scholar

2 Al-Saleh, M. F.—Samuh, M. J.: On multistage ranked set sampling for distribution and median estimation, Comput. Statist. Data Anal. 52 (2008), 2066–2078.10.1016/j.csda.2007.07.002Suche in Google Scholar

3 Bouza-Herrera, C. N.—Al-Omari, A. I.: Ranked Set Sampling, 65 Years Improving the Accuracy in Data Gathering, Academic Press, 2019.Suche in Google Scholar

4 Chen, H.–Stasny, E. A.–Wolfe, D. A.: Ranked set sampling for efficient estimation of a population proportion, Stat. Med. 24 (2005), 3319–3329.10.1002/sim.2158Suche in Google Scholar PubMed

5 Dell, T. R.–Clutter, J. L.: Ranked set sampling theory with order statistics background, Biometrics 28 (1972), 545–555.10.2307/2556166Suche in Google Scholar

6 Frey, J.—Feeman, T. G.: Finding the maximum efficiency for multistage ranked-set sampling, Comm. Statist. Theory Methods 47 (2018), 4131–4141.10.1080/03610926.2017.1367816Suche in Google Scholar

7 Frey, J.–Zhang, Y.: Robust confidence intervals for a proportion using ranked-set sampling, J. Korean Statist. Soc. 50 (2021), 1009–1028.10.1007/s42952-020-00103-3Suche in Google Scholar

8 Gemayel, N. M.—Stasny, E. A.—Tackett, J. A.—Wolfe, D. A.: Ranked set sampling: An auditing application, Rev. Quant. Fin. Acc. 39 (2012), 413–422.10.1007/s11156-011-0263-ySuche in Google Scholar

9 Mahdizadeh, M.—Strzalkowska-Kominiak, E.: Resampling based inference for a distribution function using censored ranked set samples, Comput. Statist. 32 (2017), 1285–1308.10.1007/s00180-017-0716-4Suche in Google Scholar

10 Mahdizadeh, M.—Zamanzade, E.: Reliability estimation in multistage ranked set sampling, REVSTAT 15 (2017), 565–581.Suche in Google Scholar

11 Mahdizadeh, M.—Zamanzade, E.: Dynamic reliability estimation in a rank-based design, Probab. Math. Statist. 39 (2019), 1–18.10.19195/0208-4147.39.1.1Suche in Google Scholar

12 Mahdizadeh, M.—Zamanzade, E.: Efficient body fat estimation using multistage pair ranked set sampling, Stat. Methods Med. Res. 28 (2019), 223–234.10.1177/0962280217720473Suche in Google Scholar PubMed

13 Mahdizadeh, M.—Zamanzade, E.: Smooth estimation of the area under the ROC curve in multistage ranked set sampling, Statist. Papers 62 (2021), 1753–1776.10.1007/s00362-019-01151-6Suche in Google Scholar

14 Mahdizadeh, M.—Zamanzade, E.: Using a rank-based design in estimating prevalence of breast cancer, Soft Comput. 26 (2022), 3161–3170.10.1007/s00500-022-06770-0Suche in Google Scholar

15 McIntyre, G. A.: A method of unbiased selective sampling using ranked sets, Aust. J. Agric. Res. 3 (1952), 385–390.10.1071/AR9520385Suche in Google Scholar

16 Muttlak, H. A.: Pair ranked set sampling, Biom. J. 38 (1996), 879–885.10.1002/bimj.4710380713Suche in Google Scholar

17 Nahhas, R. W.—Wolfe, D. A.—Chen, H.: Ranked set sampling: Cost and optimal sample size, Biometrics 58 (2002), 964–971.10.1111/j.0006-341X.2002.00964.xSuche in Google Scholar

18 Strzalkowska-Kominiak, E.—Mahdizadeh, M.: On the Kaplan-Meier estimator based on ranked set samples, J. Stat. Comput. Sim. 84 (2014), 2577–2591.10.1080/00949655.2013.794348Suche in Google Scholar

19 Terpstra, J. T.–Liudahl, L. A.: Concomitant-based rank set sampling proportion estimates, Stat. Med. 23 (2004), 2061–2070.10.1002/sim.1799Suche in Google Scholar PubMed

20 Terpstra, J. T.–Miller, Z. A.: Exact inference for a population proportion based on a ranked set sample, Comm. Statist. Simulation Comput. 35 (2006), 19–27.10.1080/03610910500416124Suche in Google Scholar

21 Terpstra, J. T.–Wang, P.: Confidence intervals for a population proportion based on a ranked set sample, J. Stat. Comput. Simul. 78 (2008), 351–366.10.1080/00949650601107994Suche in Google Scholar

22 Wang, X.—Lim, J.—Stokes, L.: Using ranked set sampling with cluster randomized designs for improved inference on treatment effects, J. Amer. Statist. Assoc. 111 (2016), 1576–1590.10.1080/01621459.2015.1093946Suche in Google Scholar

23 Zamanzade, E.—Mahdizadeh, M.: Estimating the population proportion in pair ranked set sampling with application to air quality monitoring, J. Appl. Stat. 45 (2018), 426–437.10.1080/02664763.2017.1279596Suche in Google Scholar

Received: 2023-10-18
Accepted: 2024-03-18
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0114/html?lang=de
Button zum nach oben scrollen