Startseite Mathematik Relative versions of first and second countability in hyperspaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Relative versions of first and second countability in hyperspaces

  • Jesús Díaz-Reyes EMAIL logo und Jesús F. Tenorio
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let CL(X) be the collection of all non-empty closed subsets of X, and Δ any subfamily of CL(X). By τΔ=τVτΔ+ , we denote the hit-and-miss topology on CL(X). In 1995, Arhangel’skii focused his attention on the following general problem was formulated: given any subspace Y of X, study the subspace Y+ of CL(X) in the Vietoris topology and the other natural topologies, where Y+ is the subspace of CL(X) consisting of all non-empty closed subsets of X which are contained in Y. In this paper, we investigate when Y+ is first (second) countable in (CL(X), τ), for τ{τΔ,τV,τΔ+} . All content of this work extend some results of the theory of hyperspaces, when Y=X or when Δ coincides with CL(X) or when is equal to the collection of all non-empty compact subsets of X.

Funding statement: The first author was supported by “Programa de Estancias Posdoctorales 2021(1), CONAHCyT”.

Acknowledgement

The authors would like to thank the referee for careful reading and very useful comments and suggestions that contributed to improving the quality of this paper.

  1. Communicated by L’ubica Holá

References

[1] Arhangel'skii, A. V.: A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36(2) (1995), 305–325.Suche in Google Scholar

[2] Arhangel'skii, A. V.: Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 87–99.10.1016/0166-8641(95)00086-0Suche in Google Scholar

[3] Arhangel'skii, A. V.—Genedi, H. M. M.: Beginnings of the theory of relative topological properties, General Topology. Spaces and Mappings MGU, Moscow, 3–48 (1989), (in Russian).Suche in Google Scholar

[4] Arhangel'skii, A. V.—Gordienko, I. J.: Relative symmetrizability and metrizability, Comment. Math. Univ. Carolin. 37(4) (1996), 757–774.Suche in Google Scholar

[5] Beer, G.: On the Fell topology, Set-Valued Anal. 1 (1993), 69–80.10.1007/BF01039292Suche in Google Scholar

[6] Beer, G.—Tamaki, R.: On hit-and-miss hyperspace topologies, Comment. Math. Univ. Carolin. 34 (1993), 717–728.Suche in Google Scholar

[7] Cairns, P.: Boundary Properties and Construction Techniques in General Topology, PhD thesis, University of Oxford, 1995.Suche in Google Scholar

[8] Čoban, M.: Note sur topologie exponentielle, Fund. Math. 71 (1971), 27–41.10.4064/fm-71-1-27-41Suche in Google Scholar

[9] Gartside, P.—Glyn, A.—McIntyre, D.: Relative calibres, Topology Appl. 132(3) (2003), 203–219.10.1016/S0166-8641(03)00003-8Suche in Google Scholar

[10] Grabner, E.—Grabner, G.—Miyazaki, K.—Tartir, J.: Relative semi-metrics, Int. J. Pure Appl. Math. 49(2) (2008), 251–277.Suche in Google Scholar

[11] Di Maio, G.—Holá, L’.: On hit-and-miss hyperspace topologies, Rend. Accad. Sci. Fis. Mat. Napoli 62(4) (1995), 103–124.Suche in Google Scholar

[12] Díaz-Reyes, J.—Martínez-Ruiz, I.—Ramírez-Páramo, A.: Relative topological properties of hyperspaces, Math. Slovaca 69(3) (2019), 675–684.10.1515/ms-2017-0256Suche in Google Scholar

[13] Engelking, R.: General Topology, Polish Sci. Publ., Warsaw, 1977.Suche in Google Scholar

[14] Fell, F.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff spaces, Proc. Amer. Math. Soc. 13 (1962), 472–476.10.1090/S0002-9939-1962-0139135-6Suche in Google Scholar

[15] Holá, L’.—Levi, S. Decomposition Properties of Hyperspace Topologies, Set-Valued Anal. 5 (1997), 309–321.10.1023/A:1008608209952Suche in Google Scholar

[16] Michael, E. Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.10.1090/S0002-9947-1951-0042109-4Suche in Google Scholar

Received: 2024-02-13
Accepted: 2024-07-15
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0113/html?lang=de
Button zum nach oben scrollen