Startseite Mathematik Self referred equations with an integral boundary condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Self referred equations with an integral boundary condition

  • Giacomo Chiriatti , Matteo Fasiello , Raffaele Grande EMAIL logo und Eduardo Pascali
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this note, we study three differential problems with a dynamic, which are be represented by a self referred equation and a boundary condition, which are expressed as an integral constraint. We prove that under certain assumptions, there exists at least one solution of for all of these problems by using Schauder’s fixed point theorem. In the end, we propose briefly some open problems.

MSC 2010: Primary 34A34; 45G10
  1. Communicated by Michal Fečkan

References

[1] Eder, E.: The functional-differential equation ∂tx(t) = x(x(t)), J. Differential Equations 54(3) (1984), 390–400.10.1016/0022-0396(84)90150-5Suche in Google Scholar

[2] Fichera, G.: Having a long memory creates serious problems, Arch. Ration. Mech. Anal. 2 (1979), 101–112.10.1007/BF00250347Suche in Google Scholar

[3] Fichera, G.: Analytic problems of materials with memory in theoretical and applied mechanics. In: Proc. 15th Internat. Congr., Univ. Toronto, Toronto, Ont., 1980, 223–230.Suche in Google Scholar

[4] Mangino, E. M.—Pascali, E.: Boundary value problems with an integral constraint, Electron. J. Differential Equations 257 (2015), 1–11.Suche in Google Scholar

[5] Miranda, M., Jr.—Pascali, E.: On a type of evolution of self-referred and hereditary phenomena, Aequationes Math. 71 (2006), 253–268.10.1007/s00010-005-2821-7Suche in Google Scholar

[6] Miranda, M., Jr.—Pascali, E.: On a class of differential equations with self-reference, Rend. Mat. Appl. (7) 25 (2005), 155–164.Suche in Google Scholar

[7] Miranda, M., Jr.—Pascali, E.: Other classes of self-referred equations, Note Mat. 29(1) (2009), 61–72.Suche in Google Scholar

[8] Rudin, W.: Functional Analysis, 2nd ed., McGraw-Hill Science, 1991.Suche in Google Scholar

[9] Tuan, N. M.—Nguyen, L. T. T.: On solutions of a system of hereditary and self referred partial differential equations, Numer. Algorithms 55 (2010), 101–113.10.1007/s11075-009-9360-6Suche in Google Scholar

[10] Van Le, U.—Nguyen, L. T. T.: Existence of solutions to a self-referred and hereditary system of differential equations, Electron. J. Differential Equations 7 (2008), 1–7.Suche in Google Scholar

[11] Volterra, V.: Opere Matematiche: Memorie e Note, Vol. 3, 1900–1913, Accademia Nazionale dei Lincei, Roma, 1957.Suche in Google Scholar

Received: 2024-02-26
Accepted: 2024-06-25
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0109/html?lang=de
Button zum nach oben scrollen