Startseite Mathematik Composition on FLew-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Composition on FLew-algebras

  • Jean B. Nganou EMAIL logo
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce the notion of CFLew-algebras, which are bounded commutative integral residuated lattices equipped with an additional operation that mimics the composition of functions. We obtain and study some of the basic properties of CFLew-algebras. In particular, we characterize semi-divisible CFLew-algebras and prove that Boolean algebras are the only CFLew-algebras having sub-CFLew-algebras of order 4. Finally, we study the effect of the composition on the filters/congruences of CFLew-algebras and also investigate the usual constructions of subalgebras, quotient algebras, as well as related classes of filters.


The author is grateful to the referee for his/her careful reading and suggestion that improved the quality of the paper.


  1. Communicated by Roberto Giuntini

References

[1] Běhounek, L.—Cintula, P.— Hájek, P.: Introduction to Mathematical Logic. In: Handbook of Mathematical Fuzzy Logic 1 (P. Cintula, P. Hájek, C. Noguera, eds.), 2001, pp. 1–92.Suche in Google Scholar

[2] Burris, S.—Shankapanavar, S.: A Course in Universal Algebra, Springer-Verlag, New York-Heidelberg-Berlin, 1981.Suche in Google Scholar

[3] Cignoli, R. L. O.—D’Ottaviano, I. M. L.—Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends Log. Stud. Log. Libr., Kluwer, Dordrecht, 2000.10.1007/978-94-015-9480-6Suche in Google Scholar

[4] DI Nola, A.—Flondor, F.—Gerla, B.: Composition on MV-algebras, J. Algebra Appl. 5(4) (2006), 417–439.10.1142/S0219498806001818Suche in Google Scholar

[5] Halmos, P.: Naive Set Theory, Princeton, NJ: D. Van Nostrand Company, 1960.Suche in Google Scholar

[6] Hart, J. B.—Rafter, L.—Tsinakis, C.: The structure of commutative residuated lattices, Internat. J. Algebra Comput. 12(4) (2002), 509–524.10.1142/S0218196702001048Suche in Google Scholar

[7] Höhle, U.: Commutative, residuated 1-monoids. In: Non-Classical Logics and their Applications to Fuzzy Subsets, 1995, pp. 53–106.10.1007/978-94-011-0215-5_5Suche in Google Scholar

[8] Jipsen, P.—Tsinakis, C.: A survey of residuated lattices. In: Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56.10.1007/978-1-4757-3627-4_3Suche in Google Scholar

[9] Nganou, J. B.—Tebu, S. F.: Topological FLew-algebras, J. Appl. Logic 13(3) (2015), 259–269.10.1016/j.jal.2015.04.004Suche in Google Scholar

[10] Ono, H.: Substructural logics and residuated lattices: an introduction. In: Trends in Logic (V. F. Hendricks, J. Malinowski, eds.), Vol. 21, 2003, pp. 177–212.10.1007/978-94-017-3598-8_8Suche in Google Scholar

[11] Turunen, E.—Mertanen, J.: States on semi-divisible residuated lattices, Soft Comput. 12 (2008), 353–357.10.1007/s00500-007-0182-ySuche in Google Scholar

Received: 2023-08-15
Accepted: 2024-09-13
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0100/pdf?lang=de
Button zum nach oben scrollen