Home Mathematics On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces
Article
Licensed
Unlicensed Requires Authentication

On the Existence of Bi-Lipschitz Equivalent Metrics in Semimetric Spaces

  • Andrea Orazio Caruso and Vincenzo Palmisano EMAIL logo
Published/Copyright: October 7, 2023
Become an author with De Gruyter Brill

ABSTRACT

We provide an overview of the known problem on the existence of a bi-Lipschitz equivalent metric with respect to a given quasi-ultrametric, revisiting known results and counterexamples in an unified approach based on the existence of a relaxed polygonal inequality. We present new proofs and characterizations of classical results using different techniques.

2020 Mathematics Subject Classification: 54E25; 54E35

(Communicated by L’ubica Holá)


Acknowledgements

The authors wish to thank the anonymous referees for several useful suggestions which led to an improved version of the paper.

REFERENCES

[1] Aimar, H.—Iaffei, B.—Nitti, L.: On the Macías-Segovia metrization of quasi-metric spaces, Rev. Un. Mat. Argentina 41 (1998), 67–76.Search in Google Scholar

[2] Assouad, P.: Plongements Lipschitziens dans n , Bull. Soc. Math. France 11 (1983), 429–448.10.24033/bsmf.1997Search in Google Scholar

[3] Blumenthal, L. M.: Theory and Applications of Distance Geometry, Chelsea Publishing Company, 2nd ed., 1970.Search in Google Scholar

[4] Chittenden, E.: On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc. 33 (1927), 13–34.10.1090/S0002-9904-1927-04295-1Search in Google Scholar

[5] Chrzaszcz, K.—Jachymski, J.—Turoboś, F.: On characterizations and topology of regular semimetric spaces, Publ. Math. Debrecen 93 (2018), 87–105.10.5486/PMD.2018.8049Search in Google Scholar

[6] Chrzaszcz, K.—Jachymski, J.—Turoboś, F.: Two refinements of Frinks metrization theorem and fixed point results for Lipschitzian mappings on quasimetric spaces, Aequationes Math. 93 (2019), 277–297.10.1007/s00010-018-0597-9Search in Google Scholar

[7] Coifman, R.—Weiss, G.: Analyse Harmonique Non-commutative sur Certains Espaces Homogenes: Etude de Certaines Intégrales Singulières, Springer-Verlag, 1971.10.1007/BFb0058946Search in Google Scholar

[8] Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 46 (1998), 263–276.Search in Google Scholar

[9] David, G.—Snipes, M.: A non-probabilistic proof of the Assouad embedding theorem with bounds on the dimension, Anal. Geom. Metr. Spaces 1 (2013), 36–41.10.2478/agms-2012-0003Search in Google Scholar

[10] David, G.—Semmes, S.: Fractured Fractals and Broken Dreams: Self-Similar Geometry Through Metric and Measure, Oxford University Press, 1997.10.1093/oso/9780198501664.001.0001Search in Google Scholar

[11] Engelking, R.: General Topology, Heldermann Verlag Berlin, 1989.Search in Google Scholar

[12] Fagin, R.—Kumar, R.—Sivakumar, D.: Comparing top k lists, SIAM J. Discrete Math. 17 (2003), 134–160.10.1137/S0895480102412856Search in Google Scholar

[13] Fraser, J. M.: Assouad Dimension and Fractal Geometry, Cambridge University Press, 2020.10.1017/9781108778459Search in Google Scholar

[14] Frink, A.: Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133–143.10.1090/S0002-9904-1937-06509-8Search in Google Scholar

[15] Heinonen, J.: Lectures on Analysis on Metric Spaces, Springer, 2001.10.1007/978-1-4613-0131-8Search in Google Scholar

[16] Heinonen, J.: Geometric Embeddings of Metric Spaces, Lectures in the Finnish Graduate School of Mathematics, University of Jyväskylä, 2003.Search in Google Scholar

[17] Kirk, W.—Shahzad, N.: Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.10.1007/978-3-319-10927-5Search in Google Scholar

[18] Lang, U.—Plaut, C.: Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata 87 (2001), 285–307.10.1023/A:1012093209450Search in Google Scholar

[19] Macías, R.—Segovia, C.: Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257–270.10.1016/0001-8708(79)90012-4Search in Google Scholar

[20] Naor, A.—Neiman, M.: Assouads theorem with dimension independent of the snowflaking, Rev. Mat. Iberoam. 28 (2012), 1123–1142.10.4171/RMI/706Search in Google Scholar

[21] Paluszyński, M.—Stempak, K.: On quasi-metric and metric spaces, Proc. Amer. Math. Soc. 137 (2009), 4307–4312.10.1090/S0002-9939-09-10058-8Search in Google Scholar

[22] Schroeder, V.: Quasi-metric and metric spaces, Conform. Geom. Dyn. 10 (2006), 355–360.10.1090/S1088-4173-06-00155-XSearch in Google Scholar

[23] Semmes, S.: Bilipschitz embeddings of metric spaces into Euclidean spaces, Publ. Math. 43 (1999), 571–653.10.5565/PUBLMAT_43299_06Search in Google Scholar

[24] Suzuki, T.: Basic inequality on a b-metric space and its applications, J. Inequal. Appl. 2017 (2017), Art. No. 256.10.1186/s13660-017-1528-3Search in Google Scholar PubMed PubMed Central

[25] Tao, T.: Quasi-metric spaces, Note available on the web (2019).Search in Google Scholar

[26] Tyson, J. T.—Wu, J. M.: Characterizations of snowflake metric spaces, Ann. Acad. Sci. Fenn. Math. 30 (2005), 313–336.Search in Google Scholar

[27] Willard, S.: General Topology, Addison-Wesley Publishing Company, 1970.Search in Google Scholar

Received: 2022-03-14
Accepted: 2023-01-11
Published Online: 2023-10-07

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0093/pdf
Scroll to top button