Startseite An Extended Gamma-Lindley Model and Inference for the Prediction of Covid-19 in Tunisia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Extended Gamma-Lindley Model and Inference for the Prediction of Covid-19 in Tunisia

  • Afif Masmoudi EMAIL logo , Dorsaf Laribi und Imen Boutouria
Veröffentlicht/Copyright: 4. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

In this research paper, we introduce an extension of the Gamma-Lindley distribution using a particular exponentiation of its cumulative distribution function, which offers a more flexible model for lifetime data. Another attractive feature of this extension is that it has several particular cases: Weibull, generalized Pareto, Lindley, exponential and Gamma-Lindley distributions. Different statistical properties of this distribution are explored, such as the density, failure rate and the r th moments. We attempt to prove that the extended Gamma-Lindley distribution is characterized by its truncated moment of order statistics. One of the main merits of this work lies in the fact that it provides the ability of this characterization to simulate the new distribution compared with the inverse transform sampling method. Estimation of the parameters using the tailed regression method is investigated. The COVID-19 real data evolution in Tunisia illustrates the performance of the EGL distribution compared with its special cases through some criteria such as the Kolmogorov-Smirnov test, Mean Squared error and Kullback-Leibler divergence. The predictive ability of the extended Gamma-Lindley distribution proved to provide a better fit to expect the number of deaths by Corona-virus in Tunisia in the future period.

2020 Mathematics Subject Classification: 62-xx

(Communicated by Gejza Wimmer)


REFERENCES

[1] https://www.worldometers.info/coronavirus/Suche in Google Scholar

[2] ARNOLD, B. C.—BALAKRISHNAN, N.—NAGARAJA, H. N.: A First Course in Order Statistics, John Wiley and Sons, New York, 1992.Suche in Google Scholar

[3] ASHOUR, S. K.—ELTEHIWY, M. A.: Exponentiated power Lindley distribution, J. Adv. Res. 6 (2015), 895– 905.10.1016/j.jare.2014.08.005Suche in Google Scholar PubMed PubMed Central

[4] BAKOUCH, H. S.—AL-ZAHRANIA, B. M.—AL-SHOMRANIA, A. A.—MARCHI, V. A. A.—LOUZADA, F.: An extended Lindley distribution, J. Korean Statist. Soc. 41(1) (2012), 75–85.10.1016/j.jkss.2011.06.002Suche in Google Scholar

[5] BOUTOURIA, I.—BOUZIDA, I.—MASMOUDI, A.: On characterizing the Gamma and beta q-distributions, Bull. Korean Math. Soc. 55(5) (2018), 1563–1575.Suche in Google Scholar

[6] BOUHADJAR, M.—AHMED, M. G.—EHAB, M. A.—ZEGHDOUDI, H.—ETAF, A.— ALANAZI, T. A.— EL-RAOUF, M. M. A.—ESLAM, H.: The power XLindley distribution: Statistical inference, fuzzy reliability, and COVID-19 application, J. Funct. Spaces 2022 (2022), Art. ID 9094078.10.1155/2022/9094078Suche in Google Scholar

[7] BOUCHAHED, L.—ŻEGHDOUDI, H.: A new and unified approach in generalizing the Lindley’s distribution with applications, Stat. Transit. 19(1) (2018), 61–74.10.21307/stattrans-2018-004Suche in Google Scholar

[8] BARRIGA, G. D. C.—LOUZADA-NETO, F.—CANCHO, V. G.: The complementary exponential power lifetime model, Comput. Statist. Data Anal. 54(5) (2011), 1250–1259.10.1016/j.csda.2010.09.005Suche in Google Scholar

[9] BHATI, D.—MALIK, M. A.: Lindley-exponential distribution: Properties and applications, Metron 73 (2015), 335–357.10.1007/s40300-015-0060-9Suche in Google Scholar

[10] DURBIN, J.—WATSON, G.: Testing for serial correlation in least squares regression, I, Biometrika 37 (1950), 409–428.10.1093/biomet/37.3-4.409Suche in Google Scholar

[11] DENIZ, E. G.—OJEDA, E. C.: The discrete Lindley distribution properties and applications, J. Stat. Comput. Simul. 81 (2011), 1405–1416.10.1080/00949655.2010.487825Suche in Google Scholar

[12] FREDJ, B. H.—CHÉRIF, F.: Novel Corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy, Chaos Solitons Fractals 138 (2020), Art. ID 109969.10.1016/j.chaos.2020.109969Suche in Google Scholar PubMed PubMed Central

[13] FANELLI, D.—PIAZZA, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Solitons Fractals 134 (2020), 109–761.10.1016/j.chaos.2020.109761Suche in Google Scholar PubMed PubMed Central

[14] GUPTA, R. D.—KUNDU, D.: Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), 173–188.10.1111/1467-842X.00072Suche in Google Scholar

[15] GHITANY, M. E.—AL-MUTAIRI, D. K.—AL-AWADHI, F. A.—AL-BURAIS, M. M.: Marshall-Olkin extended Lindley distribution and its application, Int. J. Appl. Math. 25 (2012), 709–721.Suche in Google Scholar

[16] KUCHARSKI A. J.—RUSSELL T. W.—DIAMOND, C.: Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis. 20(5) (2020), 553–558.10.1016/S1473-3099(20)30144-4Suche in Google Scholar PubMed PubMed Central

[17] KILANY, N. M.: Characterization of Lindley distrubution based on truncated moments of order statistics, J. Appl. Probab. Stat. 6(2) (2017), 1–6.10.18576/jsap/060210Suche in Google Scholar

[18] LIYANAGE, G. W.—PARARAI, M.: A generalized power Lindley distribution with applications, Asian J.Math. Appl. (2014), Art. ID ama0169, 23 pp.Suche in Google Scholar

[19] LARIBI, D.—MASMOUDI, A.—BOUTOURIA, I.: Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics, Math. Slovaca 71(2) (2021), 455–474.10.1515/ms-2017-0481Suche in Google Scholar

[20] MAZUCHELI, J.—ACHCAR, J. A.: The Lindley distribution applied to competing risks lifetime data, Comput. Methods Programs Biomed. 104 (2011), 188–192.10.1016/j.cmpb.2011.03.006Suche in Google Scholar PubMed

[21] MASMOUDI, A.—ELAOUD, A.—HASSEN, B. H.—SALAH, S. N.: A SIR-Poisson Model for COVID-19: Evolution and transmission inference in the Maghreb Central Regions, Arab. J. Sci. Eng. 694 (2020), 1–10.Suche in Google Scholar

[22] MASMOUDI, K.—MASMOUDI, A.: An EM algorithm for singular Gaussian mixture models, Filomat 33(15) (2019), 4753–4767.10.2298/FIL1915753MSuche in Google Scholar

[23] MUDHOLKAR, G. S.—SRIVASTAVA, D. K.—FREIMER, M.: The exponentiated Weibull family: a reanalysis of the bus-motor-failure data, Technometrics 37(4) (1995), 436–445.10.1080/00401706.1995.10484376Suche in Google Scholar

[24] MSELMI, F.: Multivariate Normal α-Stable Distribution, Thesis, 2015.Suche in Google Scholar

[25] NADARAJAH, S.—KOTZ, S.: The exponentiated type distributions, Acta Appl. Math. 92(2) (2006), 97–111.10.1007/s10440-006-9055-0Suche in Google Scholar

[26] SMITH, R. M.—BAIN, L. J.: An exponential power life-testing distribution, Comm. Statist. Theory Methods 4 (1975), 469–481.10.1080/03610917508548405Suche in Google Scholar

[27] ZEGHDOUDI, H.—NEDJAR, S.: On Gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math. 298 (2016), 167–174.10.1016/j.cam.2015.11.047Suche in Google Scholar

[28] ZEGHDOUDI, H.—NEDJAR, S.: Gamma Lindley distribution and its application, J. Appl. Probab. Stat.11(1) (2016), 129–138.10.16929/as/2016.923.83Suche in Google Scholar

[29] ZEGHDOUDI, H.—LAZRI, N.—DJABRANE, Y.: Lindley Pareto distribution, Stat. Transit. 19(4) (2018), 671–692.10.21307/stattrans-2018-035Suche in Google Scholar

Received: 2022-05-10
Accepted: 2022-09-19
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0078/html?lang=de
Button zum nach oben scrollen