Home Mathematics A New Version of q-Hermite-Hadamard’s Midpoint and Trapezoid Type Inequalities for Convex Functions
Article Open Access

A New Version of q-Hermite-Hadamard’s Midpoint and Trapezoid Type Inequalities for Convex Functions

  • Muhammad Aamir Ali , Hüseyin Budak , Michal Fečkan EMAIL logo and Sundas Khan
Published/Copyright: March 31, 2023
Become an author with De Gruyter Brill

Abstract

In this paper, we establish a new variant of q-Hermite-Hadamard inequality for convex functions via left and right q-integrals. Moreover, we prove some new q-midpoint and q-trapezoid type inequalities for left and right q-differentiable functions. To illustrate the newly established inequalities, we give some particular examples of convex functions.

2020 Mathematics Subject Classification: 26D10; 26D15; 26A51

1. Introduction

A function ϒ: I → ℝ, where I is an interval in ℝ is called convex, if it satisfies the inequality

Υ(tx+(1t)y)tΥ(x)+(1t)Υ(y),

where x, yI and t ∈ [0,1].

It is also well known that ϒ is convex if and only if it satisfies the Hermite-Hadamard inequality, stated below (see [13]):

1.1 Υ(λ1+λ22)1λ2λ1λ1λ2Υ(x)dxΥ(λ1)+Υ(λ2)2,

where ϒ : I → ℝ is a convex function and λ1, λ2I with λ1 < λ2.

On the other hand, in [6], Alp et al. proved the following version of quantum Hermite-Hadamard type inequality for convex functions using the left quantum integrals:

1.2 Υ(qλ1+λ2[2]q)1λ2λ1λ1λ2Υ(x) λ1dqxqΥ(λ1)+Υ(λ2)[2]q.

Recently, Bermudo et al. [8] used the right quantum integrals and proved the following variant of Hermite-Hadamard type inequality for convex functions:

1.3 Υ(λ1+qλ2[2]q)1λ2λ1λ1λ2Υ(x) λ2dqxΥ(λ1)+qΥ(λ2)[2]q.

For the left and right estimates of inequalities (1.2) and (1.3), one can consult [3,4,7,9,12,16,20,21]. In [22], Noor et al. established a generalized version of (1.2). In [1, 5, 10, 18], the authors used convexity and coordinated convexity to prove Simpson’s and Newton’s type inequalities via q-calculus. For the study of Ostrowski’s inequalities, one can consult [2, 11].

Inspired by the ongoing studies, we prove a new version of q-Hermite-Hadamard inequalities for convex functions and prove some new midpoint type inequalities for q-differentiable convex functions. We also prove that the newly established inequalities are the generalization of existing Hermite-Hadamard inequality and midpoint inequalities.

The structure of this paper is as follows: The fundamentals of q-calculus, as well as other relevant topics in this field, are briefly discussed in Section 2. In Section 3, we provide a new variant of the q-Hermite-Hadamard inequality for convex functions and use an example to demonstrate the new inequality. In Sections 4 and 5, some q-midpoint and q-trapezoid type inequalities for q-differentiable functions are studied using q-integrals. It is also taken into account the relationship between the findings given here and similar findings in the literature. We provide some mathematical examples in Section 6 to demonstrate the validity of the newly developed inequalities. Section 7 concludes with some research suggestions for the future.

2. Basics of q-calculus

In this section, we first present the definitions and some properties of quantum derivatives and quantum integrals. We also mention some well known inequalities for quantum integrals. Throughout this paper, let 0 < q < 1 be a constant.

The q-number or q-analogue of n ∈ ℕ is given by

2.1 [n]q=1qn1q=1+q+q2++qn1.

The q-Jackson integral for the function ϒ over [0, λ1] is defined as (see [15]):

2.2 0λ2Υ(x)dqx=(1q)λ2n=0qnΥ(λ2qn)

and q-Jackson integral for a function ϒ over [λ1, λ2] is as follows (see [15]):

2.3 λ1λ2Υ(x)dqx=0λ2Υ(x)dqx0λ1Υ(x)dqx.
Definition 1

([26]). Let ϒ : [λ1, λ2] → ℝ be a continuous function. Then the left q-derivative of function ϒ at x ∈ [λ1, λ2] is defined by

2.4  λ1DqΥ(x)={Υ(x)Υ(qx+(1q)λ1)(1q)(xλ1),if xλ1;limxλ1 λ1DqΥ(x),if x=λ1.

The function ϒ is said to be q-differentiable function on [λ1, λ2] if λ1 Dq ϒ(x) exists for all x ∈ [λ1, λ2].

Note that if λ1 = 0 and 0Dq ϒ(x) = Dqϒ (x), then (2.4) reduces to

DqΥ(x)={Υ(x)Υ(qx)(1q)x,if x0;limx0DqΥ(x),if x=0,

which is the q-Jackson derivative (see [15,17,26] for more details).

Theorem 2.1

([26]). If ϒ, g: J → ℝ are q-differentiable functions, then the following identities hold:

  1. The product ϒ g: [λ1, λ2] → ℝ is q-differentiable on1, λ2] with

    λ1Dq(Υg)(x)=Υ(x)λ1Dqg(x)+g(qx+(1q)λ1)λ1Dq(x)=g(x)λ1DqΥ(x)+Υ(qx+(1q)λ1)λ1Dqg(x)
  2. If g(x)g(qx+(1q)λ1)0, then ϒ/g is q-differentiable on1, λ2] with

    λ1Dq(Υg)(x)=g(x)λ1DqΥ(x)Υ(x)λ1Dqg(x)g(x)g(qx+(1q)λ1)

Definition 2

([26]). Let ϒ : [λ1, λ2] → ℝ be a continuous function. Then the left q-integral of function ϒ at z ∈ [λ1, λ2] is defined by

2.5 λ1zΥ(x)λ1dqx=(1q)(zλ1)n=0qnΥ(qnz+(1qn)λ1).

The function ϒ is said to be q-integrable function on [λ1, λ2] if λ1zΥ(x)λ1dqx exists for all z ∈ [λ1, λ2].

Note that if λ1 = 0, then (2.5) reduces to

0zΥ(x)0dqx=0zΥ(x)dqx=(1q)zn=0qnΥ(qnz),

which is the q-Jackson integral (see [15,17,26] for more details).

Theorem 2.2

([26]). If ϒ : [λ1, λ2] → ℝ is a continuous function and z ∈ [λ1, λ2], then the following identities hold:

  1. λ1Dqλ1zΥ(x)λ1dqx=Υ(z);

  2. czλ1Dqϒ(x)λ1dqx=ϒ(z)ϒ(c) for c(λ1,z).

On the other hand, Bermudo et al. defined the following new quantum derivative and quantum integral which are called right q-derivative and right q-integral:

Definition 3

([8]). The right q-derivative of mapping ϒ : [λ1, λ2] → ℝ is defined as:

λ2DqΥ(x)=Υ(qx+(1q)λ2)Υ(x)(1q)(λ2x),xλ2.

If x = λ2, we define λ2DqΥ(λ2)=limxλ2λ2DqΥ(x) if it exists and it is finite.

Definition 4

([8]). The right q-definite integral of mapping ϒ : [λ1, λ2] → ℝ on [λ1, λ2] is defined as:

λ1λ2Υ(x)λ2dqx=(1q)(λ2λ1)k=0qkΥ(qkλ1+(1qk)λ2).
Theorem 2.3

([8]). If ϒ : [λ1, λ2] → ℝ is a continuous function and z ∈ [λ1, λ2], then the following identities hold:

  1. λ1Dqzλ2Υ(x)λ1dqx=Υ(z);

  2. cλ2λ1Dqϒ(x)λ1dqx=ϒ(λ2)ϒ(z).

Lemma 2.1

([24]). For continuous functions ϒ, g: [λ1, λ2] → ℝ, the following equality holds:

0cg(t) λ2Dqϒ(tλ1+(1t)λ2)dqt=1λ2λ10cDqg(t)ϒ(qtλ1+(1qt)λ2)dqtg(t)ϒ(tλ1+(1t)λ2)λ2λ1|0c.
Lemma 2.2

([25]). For continuous functions ϒ, g: [λ1, λ2] → ℝ, the following equality holds:

0cg(t)λ1Dqϒ(tλ2+(1t)λ1)dqt=g(t)ϒ(tλ2+(1t)λ1)λ2λ1|0c1λ2λ10cDqg(t)ϒ(qtλ2+(1qt)λ1)dqt.

3. q-Hermite-Hadamard inequality

Theorem 3.1.

Let ϒ: [λ1, λ2] → ℝ be a convex mapping, then we have the following inequality:

3.1 Υ(λ1+λ22)1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1)+Υ(λ2)2.
Proof.

Since ϒ is a convex function, therefore

2Υ(x+y2)Υ(x)+Υ(y).

By letting x=t2λ1+2t2λ2 and y=2t2λ1+t2λ2, we obtain

3.2 2Υ(λ1+λ22)Υ(2t2λ1+t2λ2)+Υ(t2λ1+2t2λ2).

q-integrating the inequality (3.2) over [0,1], we have

2Υ(λ1+λ22)01Υ(λ1+t(λ1+λ22λ1))dqt+01Υ(λ2+t(λ1+λ22λ2))dqt=2λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx],

hence, the first inequality proved. We again use the convexity of ϒ to prove the second inequality, we have

3.3 Υ(2t2λ1+t2λ2)+Υ(t2λ1+2t2λ2)Υ(λ1)+Υ(λ2).

q-integrating the inequality (3.3) over [0,1], we have

2λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1)+Υ(λ2).

Thus, we obtain the required inequality.

Remark 1.

In Theorem 3.1, if we set q → 1, then we obtain the classical Hermite-Hadamard inequality (1.1).

Example 1

For a convex function ϒ (x) = x2. From Theorem 3.1 with λ1 = 0, λ2 = 1 and q=12, we have

Υ(λ1+λ22)=(0+12)2=0.25,

1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]=14n=0(12)n((12)n(12))2+14n=0(12)n((12)n(12)+(1(12)n)1)2=0.30

and

Υ(λ1)+Υ(λ2)2=0+12=0.5.

Thus, it is clear that the obtained inequality in Theorem 3.1 is valid.

4. Midpoint inequalities

In this section, we prove some left-estimates of the newly proved Hermite-Hadamard inequality (3.1) using the q-differentiability of the function.

Lemma 4.1.

Let ϒ: [λ1, λ2] ⊂ ℝ → ℝ be a function. If the functions λ1 Dq ϒ and λ1 Dq ϒ are continuous and integrable over1, λ2], then we have the following new equality:

4.1 1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)=(λ2λ1)4[01qt λ2DqΥ(t2λ1+2t2λ2)dqt01qt λ1DqΥ(2t2λ1+t2λ2)dqt].
Proof.

Let

4.2 (λ2λ1)4[01qt λ2DqΥ(t2λ1+2t2λ2)dqt01qt λ1DqΥ(2t2λ1+t2λ2)dqt]=(λ2λ1)4[I1I2].

From Lemma 2.1, we have

4.3 I1=01qt λ2DqΥ(t2λ1+2t2λ2)dqt=2q(λ2λ1)Υ(λ1+λ22)+2q(λ2λ1)01Υ(λ2+qt(λ1+λ22λ2))dqt=2q(λ2λ1)Υ(λ1+λ22)+2q(λ2λ1)(1q)n=0qnΥ(λ2+qn+1(λ1+λ22λ2))=2q(λ2λ1)Υ(λ1+λ22)+2(λ2λ1)(1q)n=0qn+1Υ(λ2+qn+1(λ1+λ22λ2))=2q(λ2λ1)Υ(λ1+λ22)+2(λ2λ1)(1q)n=1qnΥ(λ2+qn(λ1+λ22λ2))=2q(λ2λ1)Υ(λ1+λ22)+2(λ2λ1)[(1q)n=0qnΥ(λ2+qn(λ1+λ22λ2))(1q)Υ(λ1+λ22)]=2λ2λ1Υ(λ1+λ22)+4(λ2λ1)2λ1+λ22λ2Υ(x) λ2dqx.

Similarly, from Lemma 2.2, we obtain the following equality:

4.4 I2=01qt λ1DqΥ(2t2λ1+t2λ2)dqt=2λ2λ1Υ(λ1+λ22)4(λ2λ1)2λ1λ1+λ22Υ(x) λ1dqx.

Thus, we obtain the resultant equality by putting (4.3) and (4.4) in (4.2). The proof is completed. □

Remark 2.

In Lemma 4.1, if we take the limit as q → 1, then we obtain [23: Corollary 1].

Theorem 4.1.

We assume that the conditions of Lemma 4.1 hold. If the functionsλ1 Dq ϒ│ andλ2 Dq ϒ│ are convex, then the following inequality holds:

4.5 |1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)8[2]q[3]q[q[2]q|λ2DqΥ(λ1)|+q([3]q+q2)|λ2DqΥ(λ2)|]+(λ2λ1)8[2]q[3]q[q([3]q+q2)|λ1DqΥ(λ1)|+q[2]q|λ1DqΥ(λ2)|].
Proof.

On taking modulus in (4.1) and using convexity of │λ1 Dq ϒ│ and │λ2 Dq ϒ│, we have

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)4[01qt |λ2DqΥ(t2λ1+2t2λ2)|dqt+01qt |λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4[01qt (t2|λ2DqΥ(λ1)|+2t2|λ2DqΥ(λ2)|)dqt+01qt (2t2|λ1DqΥ(λ1)|+t2|λ1DqΥ(λ2)|)dqt]=(λ2λ1)4[q2[3]q|λ2DqΥ(λ1)|+12q[3]q+q2[2]q[3]q|λ2DqΥ(λ2)|]+(λ2λ1)4[12q[3]q+q2[2]q[3]q|λ1DqΥ(λ1)|+q2[3]q|λ1DqΥ(λ2)|].

Thus, the proof is completed.

Remark 3.

In Theorem 4.1, if we set the limit as q → 1, then we obtain [19: Theorem 2.2].

Theorem 4.2.

We assume that the conditions of Lemma 4.1 hold. If the functionsλ1 Dq ϒ│s andλ2 Dq ϒ│s, s ≥ 1 are convex, then the following inequality holds:

4.6 |1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|q(λ2λ1)4[2]q[([2]q|λ2DqΥ(λ1)|s+([3]q+q2)|λ2DqΥ(λ2)|s2[3]q)1s+(([3]q+q2)|λ1DqΥ(λ1)|s+[2]q|λ1DqΥ(λ2)|s2[3]q)1s].
Proof.

By taking modulus in (4.1) and using the power mean inequality, we have

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)4[01qt |λ2DqΥ(t2λ1+2t2λ2)|dqt+01qt |λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4(01qtdqt)11s[(01qt |λ2DqΥ(t2λ1+2t2λ2)|sdqt)1s+(01qt |λ1DqΥ(2t2λ1+t2λ2)|sdqt)1s].

Applying convexity of │λ1 Dq ϒ│s and │λ2 Dq ϒ│s, we have

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)4(01qtdqt)11s[(01qt (t2|λ2DqΥ(λ1)|s+2t2|λ2DqΥ(λ2)|s)dqt)1s+(01qt (2t2|λ1DqΥ(λ1)|s+t2|λ1DqΥ(λ2)|s)dqt)1s]=(λ2λ1)4(q[2]q)11s[(q2[3]q|λ2DqΥ(λ1)|s+12q[3]q+q2[2]q[3]q|λ2DqΥ(λ2)|s)1s+(12q[3]q+q2[2]q[3]q|λ1DqΥ(λ1)|s+q2[3]q|λ1DqΥ(λ2)|s)1s].

Thus, the proof is completed. □

Theorem 4.3.

We assume that the conditions of Lemma 4.1 hold. If the functionsλ1 Dq ϒ│s andλ2 Dq ϒ│s, s > 1 are convex, then the following inequality holds:

4.7 |1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|q(λ2λ1)4([r+1]q)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s],

where s−1 + r−1 = 1.

Proof.

On taking modulus in (4.1) and applying Hölder’s inequality, we have

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)4[01qt |λ2DqΥ(t2λ1+2t2λ2)|dqt+01qt |λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4(01(qt)rdqt)1r[(01 |λ2DqΥ(t2λ1+2t2λ2)|sdqt)1s+(01 |λ1DqΥ(2t2λ1+t2λ2)|sdqt)1s].

Using convexity of │λ1 Dq ϒ│s and │λ2 Dq ϒ│s, we have

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|(λ2λ1)4(01(qt)rdqt)1r[(01 (t2|λ2DqΥ(λ1)|s+2t2|λ2DqΥ(λ2)|s)dqt)1s+(01 (2t2|λ1DqΥ(λ1)|s+t2|λ1DqΥ(λ2)|s)dqt)1s]=(λ2λ1)4(qr[r+1]q)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s].

Hence, the proof is completed. □

5. Trapezoid inequalities

In this section, we prove some right-estimates of the newly proved Hermite-Hadamard inequality (3.1) using the q-differentiability of the function.

Lemma 5.1.

Let ϒ : [λ1, λ2] ⊂ ℝ → ℝ be a function. If the functions λ1 Dq ϒ and λ1 Dq ϒ are continuous and integrable over1, λ2], then we have the following new equality:

5.1 Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]=(λ2λ1)4[01(1qt) λ2DqΥ(t2λ1+2t2λ2)dqt+01(qt1) λ1DqΥ(2t2λ1+t2λ2)dqt].
Proof.

Let consider

01(1qt) λ2DqΥ(t2λ1+2t2λ2)dqt= 01 λ2DqΥ(t2λ1+2t2λ2)dqt01qt λ2DqΥ(t2λ1+2t2λ2)dqt.

By the equality (4.3), we have

5.2 01qt λ2DqΥ(t2λ1+2t2λ2)dqt=2λ2λ1Υ(λ1+λ22)+4(λ2λ1)2λ1+λ22λ2Υ(x) λ2dqx.

On the other hand, by (2.2), Definition 4 and Theorem 2.3 we have

5.3 01 λ2DqΥ(t2λ1+2t2λ2)dqt=(1q)n=0qn λ2DqΥ(qn2λ1+2qn2λ2)dqt=(1q)n=0qn λ2DqΥ(λ1+λ22qn+(1qn)λ2)dqt=2λ2λ1λ1+λ22λ2 λ2DqΥ(x) λ2dqx=2λ2λ1[Υ(λ2)Υ(λ1+λ22)].

By equalities (5.2) and (5.3), we have

5.4 01(1qt) λ2DqΥ(t2λ1+2t2λ2)dqt=2λ2λ1Υ(λ2)4(λ2λ1)2λ1+λ22λ2Υ(x) λ2dqx.

In similarly way, we can write

01(qt1) λ1DqΥ(2t2λ1+t2λ2)dqt=2λ2λ1Υ(λ1)4(λ2λ1)2λ1λ1+λ22Υ(x) λ1dqx.

This completes the proof. □

Theorem 5.1

We assume that the conditions of Lemma 5.1 hold. If the functionsλ1 Dq ϒ│ andλ2 Dq ϒ│ are convex, then the following inequality holds:

5.5 |Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)8[2]q[3]q[|λ2DqΥ(λ1)|+([3]q+q+q2)|λ2DqΥ(λ2)|]+(λ2λ1)8[2]q[3]q[([3]q+q+q2)|λ1DqΥ(λ1)|+|λ1DqΥ(λ2)|].
Proof.

On taking modulus in (5.1) and using convexity of │λ1 Dq ϒ│ and │λ2 Dq ϒ│, we have

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4[01(1qt) |λ2DqΥ(t2λ1+2t2λ2)|dqt+01(1qt) |λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4[01(1qt) (t2|λ2DqΥ(λ1)|+2t2|λ2DqΥ(λ2)|)dqt+01(1qt) (2t2|λ1DqΥ(λ1)|+t2|λ1DqΥ(λ2)|)dqt]=(λ2λ1)4[12[2]q[3]q|λ2DqΥ(λ1)|+[3]q+q+q22[2]q[3]q|λ2DqΥ(λ2)|]+(λ2λ1)4[[3]q+q+q22[2]q[3]q|λ1DqΥ(λ1)|+12[2]q[3]q|λ1DqΥ(λ2)|].

Thus, the proof is completed. □

Remark 4.

In Theorem 5.1, if we set the limit as q → 1, then we obtain [14: Theorem 2.2].

Theorem 5.2

We assume that the conditions of Lemma 5.1 hold. If the functionsλ1 Dq ϒ│s andλ2 Dq ϒ│s, s ≥ 1 are convex, then the following inequality holds:

5.6 |Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4[2]q[(|λ2DqΥ(λ1)|s+([3]q+q+q2)|λ2DqΥ(λ2)|s2[3]q)1s+(([3]q+q+q2)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[3]q)1s].
Proof.

By taking modulus in (5.1) and using the power mean inequality, we have

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4[01(1qt) |λ2DqΥ(t2λ1+2t2λ2)|dqt+01(1qt) |λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4(01(1qt) dqt)11s[(01(1qt) |λ2DqΥ(t2λ1+2t2λ2)|sdqt)1s+(01(1qt) |λ1DqΥ(2t2λ1+t2λ2)|sdqt)1s].

Applying convexity of │λ1 Dq ϒ│s and │λ2 Dq ϒ│s, we have

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|=(λ2λ1)4(01(1qt)dqt)11s×[(01(1qt) (t2|λ2DqΥ(λ1)|s+2t2|λ2DqΥ(λ2)|s)dqt)1s+(01(1qt) (2t2|λ1DqΥ(λ1)|s+t2|λ1DqΥ(λ2)|s)dqt)1s]=(λ2λ1)4(1[2]q)11s[(12[2]q[3]q|λ2DqΥ(λ1)|s+[3]q+q+q22[2]q[3]q|λ2DqΥ(λ2)|s)1s+([3]q+q+q22[2]q[3]q|λ1DqΥ(λ1)|s+12[2]q[3]q|λ1DqΥ(λ2)|s)1s].

Thus, the proof is completed. □

Theorem 5.3.

We assume that the conditions of Lemma 5.1 hold. If the functionsλ1 Dq ϒ│s andλ2 Dq ϒ│s, s > 1 are convex, then the following inequality holds:

5.7 |Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4(01(1qt)rdqt)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s],

where s−1 + r−1 = 1.

Proof.

On taking modulus in (5.1) and applying Hölder’s inequality, we have

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4[01(1qt) |λ2DqΥ(t2λ1+2t2λ2)|dqt+01(1qt)|λ1DqΥ(2t2λ1+t2λ2)|dqt](λ2λ1)4(01(1qt)rdqt)1r[(01 |λ2DqΥ(t2λ1+2t2λ2)|sdqt)1s+(01 |λ1DqΥ(2t2λ1+t2λ2)|sdqt)1s].

Using convexity of │λ1 Dq ϒ│s and │λ2 Dq ϒ│s, we have

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|(λ2λ1)4(01(1qt)rdqt)1r[(01 (t2|λ2DqΥ(λ1)|s+2t2|λ2DqΥ(λ2)|s)dqt)1s+(01 (2t2|λ1DqΥ(λ1)|s+t2|λ1DqΥ(λ2)|s)dqt)1s]=(λ2λ1)4(01(1qt)rdqt)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s].

Hence, the proof is completed. □

6. Examples

In this section, we give some examples to support newly established inequalities.

Example 2.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 4.1 with q=34, the left hand side of the inequality (4.5) becomes

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|=|12[01(x+4) 0d34x+12(x+4) 2d34x]5|=0

and the right side becomes

(λ2λ1)8[2]q[3]q[q[2]q|λ2DqΥ(λ1)|+q([3]q+q2)|λ2DqΥ(λ2)|]+(λ2λ1)8[2]q[3]q[q([3]q+q2)|λ1DqΥ(λ1)|+q[2]q|λ1DqΥ(λ2)|]=12[37+37]=0.42.

It is clear that 0 < 0.42 which demonstrate the inequality (4.5).

Example 3.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 4.2 with q=34 and s=13, the left hand side of the inequality (4.6) becomes

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|=|12[01(x+4) 0d34x+12(x+4) 2d34x]5|=0

and the right side becomes

q(λ2λ1)4[2]q[([2]q|λ2DqΥ(λ1)|s+([3]q+q2)|λ2DqΥ(λ2)|s2[3]q)1s+(([3]q+q2)|λ1DqΥ(λ1)|s+[2]q|λ1DqΥ(λ2)|s2[3]q)1s]=0.57

It is clear that 0 < 0.57 which demonstrate the inequality (4.6).

Example 4.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 4.3 with q=34, s=32 and r = 3, the left hand side of the inequality (4.7) becomes

|1λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]Υ(λ1+λ22)|=|12[01(x+4) 0d34x+12(x+4) 2d34x]5|=0

and the right side becomes

q(λ2λ1)4(1[r+1]q)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s]=0.53.

It is clear that 0 < 0.53 which demonstrate the inequality (4.7).

Example 5.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 5.1 with q=34, the left hand side of the inequality (5.5) becomes

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|=|512[01(x+4) 0d34x+12(x+4) 2d34x]|=0

and right side becomes

(λ2λ1)8[2]q[3]q[|λ2DqΥ(λ1)|+([3]q+q+q2)|λ2DqΥ(λ2)|]+(λ2λ1)8[2]q[3]q[([3]q+q+q2)|λ1DqΥ(λ1)|+|λ1DqΥ(λ2)|]=0.57.

It is clear that 0 < 0.57 which demonstrate the inequality (5.5).

Example 6.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 5.2 with q=34 and s=13, the left hand side of the inequality (5.6) becomes

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|=|512[01(x+4) 0d34x+12(x+4) 2d34x]|=0

and the right side becomes

(λ2λ1)4[2]q[(|λ2DqΥ(λ1)|s+([3]q+q+q2)|λ2DqΥ(λ2)|s2[3]q)1s+(([3]q+q+q2)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[3]q)1s]=0.57

It is clear that 0 < 0.57 which demonstrate the inequality (5.6).

Example 7.

For a convex functions ϒ: [0,2] → ℝ is defined by ϒ(x) = x + 4. From Theorem 5.3 with q=34, s=32 and r = 3, the left hand side of the inequality (5.7) becomes

|Υ(λ1)+Υ(λ2)21λ2λ1[λ1λ1+λ22Υ(x) λ1dqx+λ1+λ22λ2Υ(x) λ2dqx]|=|512[01(x+4) 0d34x+12(x+4) 2d34x]|=0

and the right side becomes

(λ2λ1)4(01(1qt)rdqt)1r[(|λ2DqΥ(λ1)|s+([2]q+q)|λ2DqΥ(λ2)|s2[2]q)1s+(([2]q+q)|λ1DqΥ(λ1)|s+|λ1DqΥ(λ2)|s2[2]q)1s]=0.66.

It is clear that 0 < 0.66 which demonstrate the inequality (5.7).

7. Conclusions

In this work, we proved a new version of q-Hermite-Hadamard inequality for convex functions through left and right q-integrals. We also proved some new midpoint and trapezoid type inequalities for left and right q-differentiable convex functions. It is new and interesting problem that the upcoming researchers can obtain the similar inequalities for co-ordinated convex functions.


(Communicated by Jozef Džurina)


Funding statement: Michal Fečkan is partially supported by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the Slovak Grant Agency VEGA No. 1/0084/23 and No. 2/0127/20. This work is also partially supported by the National Natural Science Foundation of China (No. 11971241).

REFERENCES

[1] ALI, M. A.—BUDAK, H.—ZHANG, Z.—YILDRIM, H.: Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus, Math. Methods Appl. Sci. 44 (2021), 4515–4540.10.1002/mma.7048Search in Google Scholar

[2] ALI, M. A.—CHU, Y.-M.—BUDAK, H.—AKKURT, A.—YILDRIM, H.: Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ. 2021 (2021), Art. No. 25.10.1186/s13662-020-03195-7Search in Google Scholar

[3] ALI, M. A.—ALP, N.—BUDAK, H.—CHU, Y.-M.—ZHANG, Z.: On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math. 19 (2021), 427–439.10.1515/math-2021-0015Search in Google Scholar

[4] ALI, M. A.—BUDAK, H.—ABBAS, M.—CHU, Y.-M.: Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives, Adv. Differ. Equ. 2021 (2021), Art. No. 7.10.1186/s13662-020-03163-1Search in Google Scholar

[5] ALI, M. A.—ABBAS, M.—BUDAK, H.—AGARWAL, P.—MURTAZA G.—CHU, Y.-M.: New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ. 2021 (2021), Art. No. 64.10.1186/s13662-021-03226-xSearch in Google Scholar

[6] ALP, N.—SARIKAYA, M. Z.—KUNT, M.—İŞCAN, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci. 30 (2018), 193–203.10.1016/j.jksus.2016.09.007Search in Google Scholar

[7] ALP, N.—SARIKAYA, M. Z.: Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes 20 (2020), 341–356.Search in Google Scholar

[8] BERMUDO, S.—KÓRUS, P.—VALDÉS, J. N.: On q-Hermite-Hadamard inequalities for general convex functions, xActa Math. Hungar. 162 (2020), 364–374.10.1007/s10474-020-01025-6Search in Google Scholar

[9] BUDAK, H.—ALI, M. A.—TARHANACI, M.: Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl. 186 (2020), 899–910.10.1007/s10957-020-01726-6Search in Google Scholar

[10] BUDAK, H.—ERDEN, S.—ALI, M. A.: Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci. 44 (2020), 378–390.10.1002/mma.6742Search in Google Scholar

[11] BUDAK, H.—ALI, M. A.—ALP, N.—CHU, Y.-M.: Quantum Ostrowski type integral inequalities, J. Math. Inequal. 2021, in press.Search in Google Scholar

[12] DING, Y.—KALSOOM, H.—WU, S.: Some new quantum Hermite–Hadamard-type estimates within a class of generalized (s,m)-preinvex functions, Symmetry 11 (2019), Art. No. 1283.10.3390/sym11101283Search in Google Scholar

[13] DRAGOMIR, S. S.—PEARCE, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000.Search in Google Scholar

[14] DRAGOMIR, S. S.—AGARWAL, R.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), 91–95.10.1016/S0893-9659(98)00086-XSearch in Google Scholar

[15] JACKSON, F. H.: On a q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910) 193–203.Search in Google Scholar

[16] JHANTHANAM, S.—TARIBOON, J.—NTOUYAS, S. K.—NONLAOPON, N.: On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics 7 (2019), Art. No. 632.10.3390/math7070632Search in Google Scholar

[17] KAC, V.—CHEUNG, P.: Quantum Calculus, Springer, 2001.10.1007/978-1-4613-0071-7Search in Google Scholar

[18] KALSOOM, H.—WU, J.-D.—HUSSAIN, S.—LATIF, M. A.: Simpson’s type inequalities for co-ordinated convex functions on quantum calculus, Symmetry 11 (2019), Art. No. 768.10.3390/sym11060768Search in Google Scholar

[19] KIRMACI, U. S.: Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004), 137–146.10.1016/S0096-3003(02)00657-4Search in Google Scholar

[20] LIU, W.—HEFENG, Z.: Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput. 7 (2016), 501–522.10.11948/2017031Search in Google Scholar

[21] NOOR, M. A.—NOOR, K. I.—AWAN, M. U.: Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput. 251 (2015), 675–679.10.1016/j.amc.2014.11.090Search in Google Scholar

[22] NOOR, M. A.—NOOR, K. I.—AWAN, M. U.: Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269 (2015), 242–251.10.1016/j.amc.2015.07.078Search in Google Scholar

[23] SARIKAYA, M. Z.—YILDRIM, H.: On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes 17 (2017), 1049–1059.10.18514/MMN.2017.1197Search in Google Scholar

[24] SIAL, I. B.—MEI, S.—ALI, M. A.—NANLAOPON, K.: On some generalized Simpson’s and Newton’s inequalities for (λ1, m)-convex functions in q-calculus, Mathematics 2021 (2021), Art. No. 3266.10.3390/math9243266Search in Google Scholar

[25] SOONTHARANON, J.—ALI, M. A.—BUDAK, H.—NANLAOPON, K.—ABDULLAH, Z.: Simpson’s and Newton’s inequalities for (α, m)-convex functions via quantum calculus, Symmetry 14 (2022), Art. No. 736.10.3390/sym14040736Search in Google Scholar

[26] TARIBOON, J.—NTOUYAS, S. K.: Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ. 2013 (2013), Art. No. 282.10.1186/1687-1847-2013-282Search in Google Scholar

Received: 2022-01-24
Accepted: 2022-04-07
Published Online: 2023-03-31
Published in Print: 2023-04-01

© 2023 Mathematical Institute Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0029/html
Scroll to top button