Home Topological Properties of Jordan Intuitionistic Fuzzy Normed Spaces
Article Open Access

Topological Properties of Jordan Intuitionistic Fuzzy Normed Spaces

  • Vakeel A. Khan and Umme Tuba EMAIL logo
Published/Copyright: March 31, 2023
Become an author with De Gruyter Brill

Abstract

The article delves into the task of formulation of meticulous sequence spaces whose elements’ convergence is a generalized version of the Cauchy convergence in the setting of intuitionistic fuzzy norm. The task of attaining a finite limit is attained via an infinite matrix operator, namely, Jordan totient operator. We discuss some topological and algebraic properties and establish some inclusion relations between the spaces.

2020 Mathematics Subject Classification: Primary 40A05; 40A30; 40A35; 40C05; 03B52; 46A45; Secondary 40H05; 46A35

1. Introduction

Researchers have been taking initiatives in proposing novel theories that suggests the convergence of sequences by either operating a function or transforming it into an entirely different sequence using a linear operator. This notion of redefining the sequences’ convergence which fail to converge in the usual sense falls under the category of summability theory. It has proved to be quite an indispensable tool to analyse the depths of analysis. One can perceive it as a map with domain and codomain as set of sequences and a finite limit, respectively. The introduction of regular summability method [38] ensures the convergence of the originally convergent sequence to its Cauchy limit. Several authors have deployed the notion of one such naturally occuring regular summability method; regular infinite matrix, see [12, 20, 28, 39]. For a given infinite matrix 𝒫 = (pab) and sequence spaces 𝒮, 𝒯, the map 𝒫: 𝒮𝒯 defined by 𝒫(u) = ∑ pabub for all u = (ub) ∈ 𝒮 and a, b ∈ ℕ, is the linear transformation that acts on a sequence space to produce some finite limit. Readers inquisitive about articles on sequences spaces and summability theory by means of matrix transformation are advised to explore [11, 16, 20, 26, 27].

Thereafter the introduction of fuzzy norm as a generalization of usual norm by Katsaras [19] and Felbin [9]; Bag and Samanta [2] established the base of an even general fuzzy norm. The underlying idea was to define a function that interprets the degree of truth of the length of a vector instead of assuming the length to be a fixed specified scalar. Later it was Saadati and Vaezpour [32] who improvised on the conditions of fuzzy norm. In the wake of coming up with the definition of fuzzy norm defined in terms of degree of truth via membership function, Atanassov [1] pointed out a shortcoming in the fuzzy norm and proposed the set be defined using an additional function named non-membership function which defines the degree of falsity or non-belongingess of an element in a given set which he named as intuitionistic fuzzy set.

This introduction of a newfangled idea gave the researchers an insight into defining intuitionistic fuzzy metric space [30] and intuitionistic fuzzy normed space [31] which ultimately led to inception of sequences’ convergence, statistical convergence [18], lacunary statistical convergence [29], generalized ideal convergence [7] and summability method [33] in the underlying space.

One such definite matrix operator namely Jordan totient matrix operator denoted by ϒr was introduced in [15] via Jordan totient Jr function whose domain and codomain are ℕ. The function is the number of r tuples (h1, h2, …, hr) such that 1 ≤ hin and gcd (h1, h2, …, hr, n) = 1. It is defined as Jr(n)=nrpn(11pr) where h=p1α1,p2α2,,pkαk for α ≥ 1 is the prime decomposition of n. Thereupon the Jordan totient matrix operator denoted by Υr=(νnkr) is defined as:

1.1 νnkr={Jr(k)nrif  k|n,0otherwise,

and its inverse (ϒr)−1 is given by

1.2 (Υr)1={μ(nk)Jr(n)krif k|n,0otherwise,

where μ is the Möbius function defined as:

μ(n)={0 if p2|n for some prime p,1 if n=1,(1)i if n=k=1ipk where pks are distinct.

Later Kara [17], İlkhan [14] and Khan [21] used the operator to study sequence spaces and expounded certain riveting results. In the ongoing article we define sequence spaces with the help of Jordan totient matrix operator in the setting of intuitionistic fuzzy normed spaces, study the ideal convergence of these sequences, present compelling counter examples and study algebraic and topological properties of these spaces.

2. Preliminaries

For two sequence spaces S,T and an infinite matrix 𝒫 = (pnk), the 𝒫 transform of u = (uk) is given by Pu={Pn(u)}n=1T, where

Pn(u)=k=1pnkuk,nN.

Lemma 2.1 ([38]).

An infinite matrix 𝒫 = (pnk) is regular iff:

  1. for every n ∈ ℕ, there exists ℳ > 0, such that k|pnk|M,

  2. limnpnk=0 for all k ∈ ℕ,

  3. limnkpnk=1.

The article will employ the use of the Jordan totient infinite matrix operator Υr=(νnkr) which is defined as:

2.1 νnkr={Jr(k)nrif k|n,0otherwise.

Equivalently,

Υr=[Jr(1)100000Jr(2)2rJr(1)2r0000Jr(1)3r0Jr(3)3r000Jr(1)4rJr(2)4r0Jr(4)4r00Jr(1)5r000Jr(5)5r0Jr(1)6rJr(2)6rJr(3)6r00Jr(6)6r]

The ϒr transform of (uk) ∈ ω is defined as Υnr(u):=1nrJr(k)uk.

Definition 1 ([25]).

A cluster of subsets of a non-empty set 𝒳 is said to be an ideal in 𝒳 if:

  • ∅ ∈ ,

  • A,BIABI,

  • AI,BABI.

An ideal ⊆ 2𝒳 such that ≠ 2𝒳 is a nontrivial ideal. It transforms into an admissible ideal if contains each singleton subset of 𝒳 and into a maximal ideal if there does not exist any nontrivial ideal 𝒥 such that 𝒥.

Definition 2 ([25]).

A cluster of subsets of a non-empty set 𝒳 is said to be a filter in 𝒳 if:

  • ∅ ∉ ,

  • A,BFABF,

  • 𝒜 and 𝒜 imply .

F(I)={KX:KcI} is the filter associated with ideal . All through the paper, we take as an admissible ideal in ℕ.

Definition 3 ([25]).

A sequence u = (uk) ∈ ω is said to be -convergent to c ∈ ℂ if for every ε > 0,

2.2 {kN:|ukc|ε}I.

The commonly used mathematical notation to depict the above definition of convergence is -lim uk = c.

Definition 4 ([37]).

Let P(ℕ) is a non trivial ideal, for any two sequences uk and (vk), we say uk = vk for a.a.k.r.ℐ if {k ∈ ℕ: ukvk} ∈ .

Definition 5 ([25]).

A sequence u = (uk) ∈ ω is said to be -Cauchy if, for each ε > 0, there exists a number 𝒥 = 𝒥(ε) such that the set

{kN:|ukuJ|ε}I.

Definition 6 ([34]).

A binary operation *: [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm if:

  • * is associative and commutative,

  • * is continuous,

  • a * 1 = a for all a ∈ [0, 1],

  • a * bc * d whenever ac and bd for each a, b, c, d ∈ [0, 1].

Definition 7 ([34]).

A binary operation ⋄: [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-conorm if:

  • ⋄ is associative and commutative,

  • ⋄ is continuous,

  • a ⋄ 0 = a for all a ∈ [0, 1],

  • abcd whenever ac and bd for each a, b, c, d ∈ [0, 1].

Definition 8 ([31]).

Let 𝒳 is a linear space, * & ⋄ are continuous t-norm and t-conorm respectively and ϕ, ψ are fuzzy sets on 𝒳 × (0, ∞). The five-tuple (𝒳, ϕ, ψ, *, ⋄) is an intuitionistic fuzzy normed space if for every u, v𝒳 and s, t > 0 the following conditions hold:

  • ϕ(u, t) + ψ(u, t) ≤ 1,

  • ϕ(u, t) > 0,

  • ϕ(u, t) = 1 if and only if u = 0,

  • ϕ(αu,t)=ϕ(u,tα) for each α ≠ 0,

  • ϕ(u, t) * ϕ(v, s) ≤ ϕ(u + v, t + s),

  • ϕ(u, ·): (0, ∞) → [0, 1] is continuous,

  • limtϕ(u,t)=1 and limt0ϕ(u,t)=0,

  • ψ(u, t) < 1,

  • ψ(u, t) = 0 if and only if u = 0,

  • ψ(αu,t)=ψ(u,tα) for each α ≠ 0,

  • ψ(u, t) * ψ(v, s) ≥ ψ(u + v, t + s),

  • ψ(u, ·): (0, ∞) → [0, 1] is continuous,

  • limtψ(u,t)=0 and limt0ψ(u,t)=1.

Consequently the pair (ϕ, ψ) is called intuitionistic fuzzy norm.

Definition 9 ([22]).

Let (𝒳, ϕ, ψ, *, ⋄) be an IFNS. A sequence u = (uk) is said to be -convergent to l𝒳 with respect to intuitionistic fuzzy norms (ϕ, ψ), if for every ε > 0 and t > 0, the set

{kN:ϕ(ukl,t)1ε or ψ(ukl,t)ε}I.

The notation (ϕ, ψ)-lim uk = l will be used in the article to denote the ideal convergence of the sequence (uk) to l with respect to the intuitionistic fuzzy norm (φ, ψ).

Definition 10 ([29]).

Let (𝒳, ϕ, ψ, *, ⋄) be an IFNS. A sequence u = (uk) is said to be -Cauchy sequence with respect to (ϕ, ψ), if for every ε > 0 and t > 0, there exists 𝒩 = 𝒩(ε) ∈ ℕ such that the set

{kN:ϕ(ukuN,t)1ε or ψ(ukuN,t)ε}I.

Definition 11.

Let (𝒳, ϕ, ψ, *, ⋄) be an IFNS. Then (𝒳, ϕ, ψ, *, ⋄) is said to be complete if every Cauchy sequence is convergent with respect to the intuitionistic fuzzy norm (ϕ, ψ).

3. Main results

Through the whole of the current section we presume the ideal to be a nontrivial admissible ideal of subset of ℕ. We set out the following sequence spaces:

3.1 c(ϕ,ψ)I(Υr)={u=(uk)ω:{nN:for some lC,ϕ(Υnr(u)l,t)1ε  or ψ(Υnr(u)l,t)ε}I},

3.2 c0(ϕ,ψ)I(Υr)={u=(uk)ω:{nN: ϕ(Υnr(u),t)1ε or ψ(Υnr(u),t)ε}I},

3.3 (ϕ,ψ)I(Υr)={u=(uk)ω:{nN:  ξ(0,1),ϕ(Υnr(u),t)1ξ  or ψ(Υnr(u),t)ξ}I}.

3.4 (ϕ,ψ)(Υr)={u=(uk)ω:{nN:   ξ(0,1), ϕ(Υnr(u),t)1ξ  or ψ(Υnr(u),t)ξ}.

We bring forth the following definitions of open ball and closed ball with centre at u and radius r > 0 with respect to parameter of fuzziness ε ∈ (0, 1) as follows:

3.5 BuI(r,ε)(Υr)={v=(vk)ω:{nN:ϕ(Υnr(u)Υnr(v),r)1ε  or ψ(Υnr(u)Υnr(v),r)ε}I}

3.6 BuI[r,ε](Υr)={v=(vk)ω:{nN:ϕ(Υnr(u)Υnr(v),r)<1ε  or ψ(Υnr(u)Υnr(v),r)>ε}I}.

Theorem 3.1.

The spaces c0(ϕ,ψ)I(Υr) and c(ϕ,ψ)I(Υr) are linear spaces.

Proof.

The proof of linearity of the space c0(ϕ,ψ)I(Υr) can be conclusively drawn on parallels of c(ϕ,ψ)I(Υr). Given arbitrary sequences a=(ak),b=(bk)c(ϕ,ψ)I(Υr) imply existence of a0, b0 ∈ ℂ so that (ak) and (bk) ℐ–converge to a0 and b0, respectively. For t > 0, 0 < ε < 1 and γ, λ ∈ ℝ, consider the subsequent sets:

A={nN:ϕ(Υnr(a)a0,t2|γ|)1ε or ψ(Υnr(a)a0,t2|γ|)ε}I,Ac={nN:ϕ(Υnr(a)a0,t2|γ|)>1ε or ψ(Υnr(a)a0,t2|γ|)<ε}F(I),B={nN:ϕ(Υnr(b)b0,t2|λ|)1ε or ψ(Υnr(b)b0,t2|λ|)ε}I,Bc={nN:ϕ(Υnr(b)b0,t2|λ|)>1ε or ψ(Υnr(a)a0,t2|λ|)<ε}F(I).

The set 𝒞 = 𝒜cc being a non-empty set lies in (), so consider n𝒞, then

ϕ(Υnr(γa+λb)(γa0+λb0),t)ϕ(γΥnr(a)γa0,t2)ϕ(λΥnr(b)λb0,t2)=ϕ(Υnr(a)a0,t2|γ|)ϕ(Υnr(b)b0,t2|λ|)>(1ε)(1ε)=1ε

ϕ(Υnr(γa+λb)(γa0+λb0),t)>1ε

and

ψ(Υnr(γa+λb)(γa0+λb0),t)ψ(γΥnr(a)γa0,t2)ψ(λΥnr(b)λb0,t2)=ψ(Υnr(a)a0,t2|γ|)ψ(Υnr(b)b0,t2|λ|)<εε=ε

ψ(Υnr(γa+λb)(γa0+λb0),t)<ε.

Thereupon, we conclude

C {nN:ϕ(Υnr(γa+λb)(γa0+λb0),t)>1ε}or {nN:ψ(Υnr(γa+λb)(γa0+λb0),t)<ε}.

By employing the properties of (), we have

{nN:ϕ(Υnr(γa+λb)(γa0+λb0),t)>1ε or ψ(Υnr(γa+λb)(γa0+λb0),t)<ε}F(I),

which implies that the sequence (γak + λbk) -converges to γa0 + λb0. Therefore, (γak+λbk)c(ϕ,ψ)I(Υr). Hence, c(ϕ,ψ)I(Υr) is a linear space. □

Theorem 3.2.

The inclusion relation c0(ϕ,ψ)I(Υr)c(ϕ,ψ)I(Υr)c(ϕ,ψ)I(Υr) holds.

Proof.

The inclusion of c0(ϕ,ψ)I(Υr) in c(ϕ,ψ)I(Υr) is pretty evident. We demonstrate that c(ϕ,ψ)I(Υr)c(ϕ,ψ)I(Υr). Consider the sequence u=(uk)c(ϕ,ψ)I(Υr). Then there exists l ∈ ℂ such that (ϕ, ψ)r)-lim(uk) = l, and for every 0 < ε < 1 and t > 0, the set

X={nN:ϕ(Υnr(u)l,t2)>1ε or ψ(Υnr(u)l,t2)<ε}F(I).

Let ϕ(l,t2)=p and ψ(l,t2)=q where p, q ∈ (0, 1), t > 0 and 0 < ε < 1, there exist c, d ∈ (0, 1) such that (1 − ε) * p > 1 − c and εq < d. So for n𝒳, we have

ϕ(Υnr(u),t)=ϕ(Υnr(u)l+l,t)ϕ(Υnr(u)l,t2)ϕ(l,t2)>(1ε)p>1c

and

ψ(Υnr(u),t)=ψ(Υnr(u)l+l,t)ψ(Υnr(u)l,t2)ψ(l,t2)<(1ε)q<d.

Taking h = max{c, d}, we have

{nN, h(0,1):ϕ(Υnr(u)l,t)>1h or ψ(Υnr(u)l,t)<h}F(I)

u=(uk)c(ϕ,ψ)I(Υr).

The converse of the inclusion relation does not hold. We present the following examples in support of our claim.

Example 1.

Let (ℝ, ||.||) be a normed space equipped with supremum norm, a * b = min{a, b} and ab = max{a, b} for all a, b ∈ (0, 1). Consider the norms (ϕ, ψ) on 𝒳2 × (0, ∞) as follows:

ϕ(u,t)=tt+u and ψ(u,t)=ut+u.

Then (ℝ, ϕ, ψ, *, ⋄) is a standard IFNS. Consider the sequence (uk)={u0+1k} where u0 ≠ 0 ∈ ℝ. The sequence (uk) distinctly lies in c(ϕ,ψ)I(Υr)c0(ϕ,ψ)I(Υr).

Example 2.

Let (ℝ, ||·||) be the normed space equipped with the intutionistic fuzzy norms (ϕ, ψ) as aforementioned above. Consider the sequence (uk)=sin(1k). Then, (uk)c(ϕ,ψ)I(Υr)c(ϕ,ψ)I(Υr).

Theorem 3.3.

Every open ball with centre at z and radius r > 0 with respect to parameter of fuzziness 0 < ε < 1 i.e., BzI(r,ε)(Υr) is an open set in c(ϕ,ψ)I(Υr).

Proof.

Consider the open ball with centre at z and radius r > 0 with parameter of fuzziness 0 < ε < 1,

BzI(r,ε)(Υnr)={y=(yk)ω:{nN:ϕ(Υnr(z)Υnr(y),r)1ε  or ψ(Υnr(z)Υnr(y),r)ε}I}BzI(r,ε)(Υnr)={y=(yk)ω:{nN:ϕ(Υnr(z)Υnr(y),r)>1ε  or ψ(Υnr(z)Υnr(y),r)<ε}F(I)}.

Consider the element y=(yk)BzI(r,ε)(Υnr). Then its corresponding set

{nN:ϕ(Υnr(z)Υnr(y),r)>1ε or ψ(Υnr(z)Υnr(y),r)<ε}F(I).

For ϕ(Υnr(z)Υnr(y),r)>1ε and ψ(Υnr(z)Υnr(y),r)<ε, there exists r0 ∈ (0, r) such that ϕ(Υnr(z)Υnr(y),r0)>1ε and ψ(Υnr(z)Υnr(y),r0)<ε. Setting ε0=ϕ(Υnr(z)Υnr(y),r0) we get ε0 > 1 − ε which further concludes the existence of an element s ∈ (0, 1) such that ε0 > 1 − s > 1 − ε. For a given ε0 > 1 − s, we can find ε1, ε2 ∈ (0, 1) such that ε0 * ε1 > 1 − s and (1 − ε0) ⋄ (1 − ε2) < s. Assume ε3 = max{ε1, ε2}. Consider the open ball ByI(rr0,1ε3)(Υnr). The containment of ByI(rr0,1ε3)(Υnr) in BzI(r,ε)(Υnr) will give us the desired result.

Let w=(wk)ByI(rr0,1ε3)(Υnr), then {nN:ϕ(Υnr(y)Υnr(w),rr0)>ε3 or ψ(Υnr(y)Υnr(w),rr0)<1ε3}F(I). Therefore,

ϕ(Υnr(z)Υnr(w),r)ϕ(Υnr(z)Υnr(y),r0)ϕ(Υnr(y)Υnr(w),rr0)ε0ε3ε0ε1>(1s)>(1ε)

{nN:ϕ(Υnr(z)Υnr(w),r)>1ε}F(I),

and correspondingly

ψ(Υnr(z)Υnr(w),r)ψ(Υnr(z)Υnr(y),r0)ψ(Υnr(y)Υnr(w),rr0)(1ε0)(1ε3)(1ε0)(1ε2)<s<ε

{nN:ψ(Υnr(z)Υnr(w),r)<ε}F(I).

Thus the set

{nN:ϕ(Υnr(z)Υnr(w),r)>1ε or ψ(Υnr(z)Υnr(w),r)<ε}F(I)

ByI(rr0,1ε3)(Υnr)BzI(r,ε)(Υnr).

Remark 1.

The spaces c0(ϕ,ψ)I(Υr) and c(ϕ,ψ)I(Υr) are IFNS with respect to intuitionistic fuzzy norms (ϕ, ψ).

Remark 2.

τ(ϕ,ψ)I(Υr)={Ac(ϕ,ψ)I(Υr):for each z=(zk)A, there exist r>0 and ε(0,1) such that BzI(r,ε)(Υnr)A}. Then τ(ϕ,ψ)I(Υr) defines a topology on the sequence space τ(ϕ,ψ)I(Υr). The collection defined by B={BzI(r,ε):zc(ϕ,ψ)I(Υr),r>0 and ε(0,1)} is a base for the topology τ(ϕ,ψ)I(Υr) on the space c(ϕ,ψ)I(Υr).

Theorem 3.4.

The spaces c0(ϕ,ψ)I(Υr) and c(ϕ,ψ)I(Υr) are Hausdorff spaces.

Proof.

Let v = (vk) and w=(wk)c0(ϕ,ψ)I(Υr) such that vw. Then for each n ∈ ℕ and r > 0, implies 0<ϕ(Υnr(v)Υnr(w),r)<1 and 0<ψ(Υnr(v)Υnr(w),r)<1.

Putting ε1=ϕ(Υnr(v)Υnr(w),r), ε2=ψ(Υnr(v)Υnr(w),r) and ε = max{ε1, 1 − ε2}. Then for each ε0 > ε, there exist ε3, ε4 ∈ (0, 1) such that ε3 * ε3ε0 and (1 − ε4) ⋄ (1 − ε4) ≤ (1 − ε0). Assigning ε5 = max{ε3, ε4}, consider the open balls BvI(1ε5,r2)(Υnr) and BwI(1ε5,r2)(Υnr) centered at v and w respectively. We demonstrate that BvI(1ε5,r2)(Υnr)BwI(1ε5,r2)(Υnr)=ϕ. If viable let z=(zk)BvI(1ε5,r2)(Υnr)BwI(1ε5,r2)(Υnr). Then for the set {n ∈ ℕ} ∈ (), we have

3.7 ε1=ϕ(Υnr(v)Υnr(w),r)ϕ(Υnr(v)Υnr(z),r2)ϕ(Υnr(z)Υnr(w),r2)>ε5ε5ε3ε3ε0>ε1

and

3.8 ε2=ψ(Υnr(v)Υnr(w),r)ψ(Υnr(v)Υnr(z),r2)ψ(Υnr(z)Υnr(w),r2)<(1ε5)(1ε5)(1ε4)(1ε4)(1ε0)<ε2.

Equation (3.7) leads to contradiction. Therefore, BvI(1ε5,r2)(Υnr)BwI(1ε5,r2)(Υnr)=ϕ. Hence, the space c(ϕ,ψ)I(Υr) is a Hausdorff space. □

Theorem 3.5.

If a sequence z = (zk) ∈ ω is Jordan intuitionistic fuzzy ℐ convergent then the I(ϕ,ψ)(Υnr)-limit is unique.

Proof.

Presuming the sequence z = (zk) to be Jordan intuitionistic fuzzy convergent with non-identical ideal limits l1 and l2. Given an ε ∈ (0, 1), there exists ε1 ∈ (0, 1) such that (1 − ε1) * (1 − ε1) > 1− ε and ε1ε1 < ε. Thus the sets

S={nN:ϕ(Υnr(z)l1,t2)1ε1 or ψ(Υnr(z)l1,t2)ε1}ISc={nN:ϕ(Υnr(z)l1,t2)>1ε1 or ψ(Υnr(z)l1,t2)<ε1}F(I),T={nN:ϕ(Υnr(z)l2,t2)1ε1 or ψ(Υnr(z)l2,t2)ε1}ITc={nN:ϕ(Υnr(z)l2,t2)>1ε1 or ψ(Υnr(z)l2,t2)<ε1}F(I).

Then 𝒮c𝒯cϕ. Taking n𝒮c𝒯c, we have

ϕ(l1l2,t)ϕ(Υnr(z)l1,t2)ϕ(Υnr(z)l2,t2)>(1ε1)(1ε1)>(1ε)

and

ψ(l1l2,t)ψ(Υnr(z)l1,t2)ψ(Υnr(z)l2,t2)<ε1ε1<ε.

ε ∈ (0, 1) being arbitrary; l1 = l2. That is I(ϕ,ψ)(Υnr)-limit is unique. □

Theorem 3.6.

A sequence z = (zk) ∈ ω is Jordan intuitionistic fuzzy ℐ convergent with respect to intuitionistic fuzzy norms (ϕ, ψ) iff it is Jordan intuitionistic fuzzy ℐ-Cauchy with reference to the identical norms.

Proof.

Let z = (zk) ∈ ω is Jordan intuitionistic fuzzy convergent with respect to intuitionistic fuzzy norms (ϕ, ψ) such that I(ϕ,ψ)(Υnr)-lim(zk) = l and there exists ε1 ∈ (0, 1) such that (1 – ε1) * (1 – ε1) > 1 – ε and ε1ε1 < ε for a given ε ∈ (0, 1). Thus for all t > 0,

P={nN:ϕ(Υnr(z)l1,t)1ε1 or ψ(Υnr(z)l1,t)ε1}IPc={nN:ϕ(Υnr(z)l1,t)>1ε1 or ψ(Υnr(z)l1,t)<ε1}F(I).

For n𝒫c, ϕ(Υnr(z)l1,t)>1ε1 or ψ(Υnr(z)l1,t)<ε1. For a particular k𝒫c, we can say

Q={nN:ϕ(Υnr(z)Υkr(z),t)1ε or ψ(Υnr(z)Υkr(z),t)ε}.

Let

nQ  ϕ(Υnr(z)Υkr(z),t)1ε  or  ψ(Υnr(z)Υkr(z),t)ε.

On the contrary, let ϕ(Υnr(z)Υkr(z),t)>1ε. Then

1εϕ(Υnr(z)Υkr(z),t)ϕ(Υnr(z)l,t2)ϕ(Υkr(z)l,t2)>(1ε1)(1ε1)>(1ε),

which is a contradiction. Likewise, consider ψ(Υnr(z)Υkr(z),t)ε such that ψ(Υnr(z)l,t2)ε1. On the contrary, let ψ(Υnr(z)l,t2)<ε1. Hence

εψ(Υnr(z)Υkr(z),t)ψ(Υnr(z)l,t2)ψ(Υkr(z)l,t2)<ε1ε1<ε,

which is a contradiction too. Therefore, for n𝒬, we have ϕ(Υnr(z)l,t)1ε1 and ϕ(Υnr(z)l,t)ε1, which imply n𝒫. Therefore, 𝒬𝒫 and 𝒬. Consequently the sequence z = (zk) is Jordan intuitionistic fuzzy -Cauchy with respect to norms (ϕ, ψ).

Conversely, presuppose z = (zk) is Jordan intuitionistic fuzzy - Cauchy with respect to the norms (ϕ, ψ) and is not Jordan intuitionistic fuzzy -convergent. As a result, there exists k ∈ ℕ such that

A={nN:ϕ(Υnr(z)Υkr(z),t)1ε  or  ψ(Υnr(z)Υkr(z),t)ε}I

and

B={nN:ϕ(Υnr(z)l,t)>1ε or ψ(Υnr(z)l,t)<ε}I

1εϕ(Υnr(z)Υkr(z),t)ϕ(Υnr(z)l,t2)ϕ(Υnr(z)l,t2)>(1ε1)(1ε1)>1ε.

Simultaneously,

εψ(Υnr(z)Υkr(z),t)ψ(Υnr(z)l,t2)ψ(Υnr(z)l,t2)<ε1ε1<ε,

which lead to contradiction. Therefore, () and hence, z = (zk) is Jordan intuitionistic fuzzy -convergent. □

Theorem 3.7.

Consider IFNS c(ϕ,ψ)I(Υr) and τ(ϕ,ψ)I(Υr) be the topology on c(ϕ,ψ)I(Υr). Let (zj)=(zkj)j=1 be a sequence in c(ϕ,ψ)I(Υr). The sequence zjz as j → ∞ if and only if ϕ(Υnr(zj)Υnr(z),t)1 and ψ(Υnr(zj)Υnr(z),t)0 as n → ∞.

Proof.

Let zjz as j → ∞. Fix a designated r > 0 and 0 < ε < 1, there exists n ∈ ℕ such that (zj)BzI(r,ε)(Υnr) for all jk. Then,

S={nN:ϕ(Υnr(zj)Υnr(z),r)1ε or ψ(Υnr(zj)Υnr(z),r)ε}I,

or equivalently,

Sc={nN:ϕ(Υnr(zj)Υnr(z),r)>1ε or ψ(Υnr(zj)Υnr(z),r)<ε}F(I).

For {nN}Sc,ϕ(Υnr(zj)Υnr(z),r)>1ε 1ϕ(Υnr(zj)Υnr(z),r)<ε and ψ(Υnr(zj)Υnr(z),r)<ε. Therefore, for n → ∞, 1ϕ(Υnr(zj)Υnr(z),r)0 and ψ(Υnr(zj)Υnr(z),r)0. This implies that ϕ(Υnr(zj)Υnr(z),r)1 and ψ(Υnr(zj)Υnr(z),r)0 as n → ∞.

Conversely, suppose that for each t > 0, ϕ(Υnr(zj)Υnr(z),t)1 and ψ(Υnr(zj)Υnr(z),t)0 as n → ∞. Then for each ε ∈ (0, 1), there exists k ∈ ℕ such that 1ϕ(Υnr(zj)Υnr(z),t)<ε and ψ(Υnr(zj)Υnr(z),t)<ε for all nkϕ(Υnr(zj)Υnr(z),t)>1ε and ψ(Υnr(zj)Υnr(z),t)<ε for all nk. Consider the ideal generated by the set {n ∈ ℕ : n < k}, implies that the collection of sets generated by the set {n ∈ ℕ : nk} belongs to (). Thus {nN:ϕ(Υnr(zj)Υnr(z),t)>1ε or ϕ(Υnr(zj)Υnr(z),t)<ε}F(I)(zj)BzI(r,ε)(Υnr) for all nk. Hence, zjz as j → ∞. □

Theorem 3.8.

Let z=(zk)c(ϕ,ψ)I(Υr). Then for some l ∈ ℂ, zkI(ϕ,ψ)(Υr)l if and only if for every ε ∈ (0, 1) and t > 0, there exist positive integers 𝒩 = 𝒩(z, ε, t) such that

{NN:ϕ(ΥNr(z)l,t2)>1ε or  ψ(ΥNr(z)l,t2)<ε}F(I).

Proof.

Suppose zkI(ϕ,ψ)(Υr)l for some l ∈ ℂ. For given ε ∈ (0, 1), there exists r ∈ (0, 1) such that (1 – ε) * (1 – ε) > 1 – r and εε < r. Since zkI(ϕ,ψ)(Υr)l, for all t > 0,

X={nN:ϕ(Υnr(z)l,t2)1ε  or  ψ(Υnr(z)l,t2)ε}I;

which implies that

Xc={nN:ϕ(Υnr(z)l,t2)>1ε  or  ψ(Υnr(z)l,t2)<ε}F(I).

Conversely, let us choose 𝒩𝒳c. Then

ϕ(ΥNr(z)l,t2)>1ε  or  ψ(ΥNr(z)l,t2)<ε.

We show the existence of a positive integer 𝒩 = 𝒩(z, ε, t) such that

P={nN:ϕ(Υnr(z)ΥNr(z),t)1r or ψ(Υnr(z)ΥNr(z),t)r}I.

We shall show that 𝒫𝒳. On the contrary, let 𝒫𝒳, i.e., there exists n𝒫 such that n𝒳. Then

ϕ(Υnr(z)ΥNr(z),t)1r and ϕ(Υnr(z)l,t2)>1ε.

Particularly,

ϕ(ΥNr(z)l,t2)>1ε.

Therefore, we have

1rϕ(Υnr(z)ΥNr(z),t)ϕ(Υnr(z)l,t2)ϕ(ΥNr(z)l,t2) (1ε)(1ε)>1r

which is a contradiction. Similarly,

ψ(Υnr(z)ΥNr(z),t)r and ψ(Υnr(z)l,t)<ε.

Particularly,

ψ(ΥNr(z)l,t2)<ε.

Therefore,

rψ(Υnr(z)ΥNr(z),t)ψ(Υnr(z)l,t2)ψ(ΥNr(z)l,t2)εε<r,

which is again a contradiction. Hence, 𝒫𝒳 and since 𝒳, implies 𝒫. □

Definition 12.

A non-empty set Sc(ϕ,ψ)I(Υr) is compact if every open cover of 𝒮 defined by the open set of τ(ϕ,ψ)I(Υr) has a finite subcover.

Theorem 3.9.

Every finite subset 𝒮 of c(ϕ,ψ)I(Υr) is compact.

Proof.

Let 𝒮 = {z1, z2, z3,…, zn} be the finite subset of c(ϕ,ψ)I(Υr). For r > 0 and 0 < ε < 1, let us assume {BzI(r,ε)(Υnr):zS} is an open cover of 𝒮. Then SzSBzI(r,ε)(Υnr).

Now for all zi𝒮, i = 1, 2, 3,… n, we have zizisBziI(r,ε)(Υnr). That implies ziBzjI(r,ε)(Υnr) for some j ∈ {1, 2, 3,…, n}. Then {BziI(r,ε)(Υnr):i=1,2,3,,n} is a finite subcover of 𝒮. □

Theorem 3.10.

A set Sc(ϕ,ψ)I(Υr) is compact iff every sequence in 𝒮 has a convergent subsequence.

Proof.

Suppose 𝒮 is a compact subset of c(ϕ,ψ)I(Υr). Let (zkj)=(zj)j=1 be a sequence in 𝒮. For given 0 < ε < 1 and r > 0, let {BzI(r3,ε)(Υnr):z=(zk)S} be an open cover of 𝒮. This implies, (zj)zS{BzI(r3,ε)(Υnr)}. Then there exists some z = (zk) ∈ S such that (zj)BzI(r3,ε)(Υnr). Therefore, the set

X={nN:ϕ(Υnr(zj)Υnr(z),fr3)>1ε  or  ψ(Υnr(zj)Υnr(z),r3)<ε}F(I).

There exists a finite subcover {BziI(r3,ε)(Υnr):ziS and i=1,2,3,.m} since 𝒮 is compact such that Si=1mBziI(r3,ε)(Υnr). Let (zjp) be a subsequence of (zj). Then (zjp)i=1mBziI(r3,ε)(Υnr), implies (zjp)BziI(r3,ε)(Υnr), for some zi𝒮. Therefore, the set

Y={nN:ϕ(Υnr(zjp)Υnr(zi),r3)>1ε or ψ(Υnr(zjp)Υnr(zi),r3)<ε}F(I).

For n𝒳𝒴,

ϕ(Υnr(zjp)Υnr(z),r)ϕ(Υnr(zjp)Υnr(zi),r3)ϕ(Υnr(zj)Υnr(zi),r3)ϕ(Υnr(zj)Υnr(z),r3)>(1ε)(1ε)(1ε)=(1ε).

Simultaneously,

ψ(Υnr(zjp)Υnr(z),r)ψ(Υnr(zjp)Υnr(zi),r3)ψ(Υnr(zj)Υnr(zi),r3)ψ(Υnr(zj)Υnr(z),r3)<εεε=ε.

Take ε=1n. Then

limnϕ(Υnr(zjp)Υnr(z),r)=limn11n=1 and limnψ(Υnr(zjp)Υnr(z),r)=limn1n=0.

Thus by theorem (3.7), zjpz, as p → ∞. Conversely, suppose (zjp) be the subsequence of a sequence (zj) in 𝒮 such that (zjp) → z in 𝒮. Let on contrary 𝒮 is not a compact subset of c(ϕ,ψ)I(Υr). Let {BzI(r3,ε)(Υnr):xS} be an open cover of 𝒮 implies SzS{BzI(r3,ε)(Υnr). Therefore, the set

{nN:ϕ(Υnr(zj)Υnr(z),r)>1ε  or  ψ(Υnr(zj)Υnr(z),r)<ε}F(I).

Since 𝒮 is not compact, there exists a finite subcover {BziI(r,ε)(Υnr):ziS,i=1,2,3,m} such that SziSBziI(r,ε)(Υnr), which implies that the set

{nN:ϕ(Υnr(zjp)Υnr(zi),r)>1ε or ψ(Υnr(zjp)Υnr(zi),r)<ε}F(I)

⇒ for any 0 < ε < 1 and r > 0, (zjp)BzI(r,ε). Hence, (zjp) z, which is a contradiction. Hence, S is compact. □

Theorem 3.11.

Consider the IFNS c(ϕ,ψ)I(Υr). Let r > 0 and ε, ε′ ∈ (0, 1) such that (1 − ε) * (1 − ε) ≥ (1 − ε′) and εεε′. Then for any z=(zk)c(ϕ,ψ)I(Υr), BzI(r2,ε)(Υnr)¯BzI(r,ε)(Υnr).

Proof.

Let q=(qk)BzI(r2,ε)(Υnr)¯ and BqI(r2,ε)(Υnr) be an open ball with centre at q and radius ε. Hence, BzI(r2,ε)(Υnr)BqI(r2,ε)(Υnr)ϕ. Suppose v=(vk)BqI(r2,ε)(Υnr)BzI(r2,ε)(Υnr). Then, the sets

X={nN:ϕ(Υnr(q)Υnr(v),r2)>1ε1 or ψ(Υnr(q)Υnr(v),r2)<ε1}F(I),Y={nN:ϕ(Υnr(z)Υnr(v),r2)>1ε or ψ(Υnr(z)Υnr(v),r2)<ε1}F(I).

Consider n𝒳𝒴. Then

ϕ(Υnr(z)Υnr(q),r)ϕ(Υnr(z)Υnr(v),r2)ϕ(Υnr(q)Υnr(v),r2)>(1ε)(1ε)(1ε)

and

ψ(Υnr(z)Υnr(q),r)ψ(Υnr(z)Υnr(v),r2)ψ(Υnr(q)Υnr(v),r2)<εεε.

Therefore, the set

{nN:ϕ(Υnr(z)Υnr(q),r)>1ε  or  ψ(Υnr(z)Υnr(q),r)<ε}F(I)

q=(qk)BzI(r,ε)(Υnr).

Hence, BzI(r2,ε)(Υnr)¯BzI(r2,ε)(Υnr). □

Theorem 3.12.

Let z = (zk) ∈ ω. If there exists a sequence z=(zk)c(ϕ,ψ)I(Υr) such that Υnr(z)=Υnr(z) for almost all n relative to ℐ, then zc(ϕ,ψ)I(Υr).

Proof.

Suppose Υnr(z)=Υnr(z) for almost all n relative to . Then {nN:Υnr(z)Υnr(z)}I. This implies {nN:Υnr(z)=Υnr(z)}F(I). Therefore, for n() for all t > 0,

ϕ(Υnr(z)Υnr(z),t2)=1 and ψ(Υnr(z)Υnr(z),t2)=0.

Since (zk)c(ϕ,ψ)I(Υr), let I(ϕ,ψ)(Υr)lim(zk)=l. Then for every ε ∈ (0, 1) and t > 0,

X={nN:ϕ(Υnr(z)l,t2)>1ε  or  ψ(Υnr(z)l,t2)<ε}F(I).

Consider the set

Y={nN:ϕ(Υnr(z)l,t)>1ε  or  ψ(Υnr(z)l,t)<ε}.

We show that 𝒳𝒴. So for n𝒳, we have

ϕ(Υnr(z)l,t)ϕ(Υnr(z)Υnr(z),t2)ϕ(Υnr(z)l,t2)>1(1ε)=1ε

and

ψ(Υnr(z)l,t)ψ(Υnr(z)Υnr(z),t2)ψ(Υnr(z)l,t2)<0ε=ε.

This implies that n𝒴 and hence, 𝒳𝒴. Since 𝒳(), therefore, 𝒴(). Hence, z=(zk)c(ϕ,ψ)I(Υr). □

Theorem 3.13.

A closed ball BzI[r,ε](Υr) is a closed set in c(ϕ,ψ)I(Υr).

Proof.

Let y = (yk) ∈ ω be such that yBzI[r,ε](Υr)¯. Thus there exists a sequence (yj)=(ykj)BzI[r,ε](Υr) such that yjy as j → ∞. Thus

X={nN:ϕ(Υnr(yj)Υnr(z),r)1ε  or  ψ(Υnr(yj)Υnr(z),r)ε}F(I).

Since yjz as j → ∞, by Theorem 3.7, ϕ(Υnr(yj)Υnr(y),r)1 and ψ(Υnr(yj)Υnr(y),r)0, for all t > 0 as n → ∞. Hence, for n𝒳,

ϕ(Υnr(z)Υnr(y),t+r)limnϕ(Υnr(yj)Υnr(y),t)ϕ(Υnr(yj)Υnr(z),r) 1(1ε)=1ε

and

ψ(Υnr(z)Υnr(y),t+r)limnψ(Υnr(yj)Υnr(y),t)ψ(Υnr(yj)Υnr(z),r)0ε=ε.

A particular k ∈ ℕ, take t=1k. Then

ϕ(Υnr(z)Υnr(y),r)=limkϕ(Υnr(z)Υnr(y),r+1k)1ε

and

ψ(Υnr(z)Υnr(y),r)=limkϕ(Υnr(z)Υnr(y),r+1k)ε,

⇒ the set {nN:ϕ(Υnr(z)Υnr(y),r)1ε or ϕ(Υnr(z)Υnr(y),r)ε}F(I)yBzI[r,ε](Υr). Therefore, BzI[r,ε](Υr) is a closed set. □

Theorem 3.14.

Let 𝒮 be the compact subset of c(ϕ,ψ)I(Υr) such that z = (zk) ∉ 𝒮. Then there exist two open sets 𝒰, 𝒱 in c(ϕ,ψ)I(Υr) such that 𝒮𝒱, z𝒰 and 𝒰𝒱 = ϕ.

Proof.

Let 𝒮 be a compact subset of c(ϕ,ψ)I(Υr) and z𝒮. Then for any s𝒮 we have zs. Since c(ϕ,ψ)I(Υr) is a Hausdorff space, then for some r > 0 and 0 < ε < 1 there exist two open balls U=BzI(r,ε)(Υr) and V=BsI(r,ε)(Υr) such that 𝒰𝒱 = ϕ. Consider the open cover Vs={BsI(r,ε)(Υr):s S} of 𝒮 and 𝒮 is compact, therefore, there exists a finite subcover Ssi={BsiI(r,ε)(Υr):si S and i=1,2,3,,j} such that Si=1jVsi. Taking V=i=1jVsi we have z𝒮. Hence, 𝒰, 𝒱 are open sets such that 𝒮𝒱 and 𝒰𝒱 = ϕ. □

4. Conclusion

The article deploys the notion of a regular matrix implemented on an initially non-convergent sequence to attain some finite limit. It further explores the convergence of the sequences generated after operating the regular Jordan totient operator in the setting of intuitionistic fuzzy norm via a collection of finite subsets of ℕ. We formulate novel sequence spaces c0(ϕ,ψ)I(Υr), c(ϕ,ψ)I(Υr), (ϕ,ψ)I(Υr) and ∞(ϕ, ψ)r) and study relations among them. Researchers’ interest can further aim at developing function spaces with the aid of a generalized infinite operator and study their properties.


(Communicated by Anatolij Dvurečenskij)


REFERENCES

[1] ATANASSOV, K. T.: Intuitionistic Fuzzy Sets, Springer, 1999.10.1007/978-3-7908-1870-3Search in Google Scholar

[2] BAG, T.—SAMANTA, S. K.: Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11(3) (2003), 687–706.Search in Google Scholar

[3] BALCERZAK, M.—DEMS, K.—KOMISARSKIC, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(1) (2007), 715–729.10.1016/j.jmaa.2006.05.040Search in Google Scholar

[4] DAS, A.—HAZARIKA, B.: Some new Fibonacci difference spaces of non-absolute type and compact operators, Linear Multilinear Algebra 65(12) (2017), 2551–2573.10.1080/03081087.2017.1278738Search in Google Scholar

[5] DEMIRIZ, S.—İLKHAN, M.—KARA, E. E.: Almost convergence and Euler totient matrix, Ann. Funct. Anal. (2020), 1–13.Search in Google Scholar

[6] ESI, A.—HAZARIKA, P.: λ-Ideal convergence in intuitionistic fuzzy 2-normed linear space, J. Intell. Fuzzy Syst. 24(4) (2013), 725–732.10.3233/IFS-2012-0592Search in Google Scholar

[7] HAZARIKA, B.—KUMAR, V.—LAFUERZA-GUILLÉN, B.: Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat 27(5) (2013), 811–820.10.2298/FIL1305811HSearch in Google Scholar

[8] İLKHAN, M.—DEMIRIZ, S.—KARA, E. E.: A new paranormed sequence space defined by Euler totient matrix, Karaelmas Fen ve Mühendislik Dergisi 9(2) (2019), 277–282.Search in Google Scholar

[9] FELBIN, C.: Finite dimensional fuzzy normed linear spaces II, J. Anal. (1999).Search in Google Scholar

[10] FILIPÓW, R.—TYRBA, J.: Ideal convergence versus matrix summability, Studia Math. 245 (2019), 101–127.10.4064/sm170413-12-12Search in Google Scholar

[11] GROSSE-ERDMANN, K.: Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180(1) (1993), 223–238.10.1006/jmaa.1993.1398Search in Google Scholar

[12] İLKHAN, M.: Matrix domain of a regular matrix derived by Euler totient function in the spaces c0 and c, Mediterr. J. Math. 17(1) (2020), 1–21.10.1007/s00009-019-1442-7Search in Google Scholar

[13] İLKHAN, M.: A new Banach space defined by Euler totient matrix operator, Oper. Matrices 13(2) (2019), 527–544.10.7153/oam-2019-13-40Search in Google Scholar

[14] İLKHAN, M.—KARA, E. E.—USTA, F.: Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci. (2020).10.1002/mma.6537Search in Google Scholar

[15] İLKHAN, M.—ŞIMŞEK, N.—KARA, E. E.: A new regular infinite matrix defined by Jordan totient function and its matrix domain in lp, Math. Methods Appl. Sci. (2020).10.1002/mma.6501Search in Google Scholar

[16] JARRAH, A. M.—MALKOWSKY, E.: Ordinary, absolute and strong summability and matrix transformations, Filomat (2003), 59–78.10.2298/FIL0317059JSearch in Google Scholar

[17] KARA, E. E.—ŞIMŞEK, N.: A study on certain sequence spaces using Jordan totient function, 8TH International Eurasian Conference On Mathematical Sciences and Applications, Baku, Azerbaijan, 2019.Search in Google Scholar

[18] KARAKUS, S.—DEMIRCI, K.—DUMAN, O.: Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 35(4) (2008), 763–769.10.1016/j.chaos.2006.05.046Search in Google Scholar

[19] KATSARAS, A. K.: Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12(2) (1984), 143–154.10.1016/0165-0114(84)90034-4Search in Google Scholar

[20] KHAN, V. A.—EBADULLAH, K.: On some I-Convergent sequence spaces defined by a modulus function, Theory and Applications of Mathematics & Computer Science 1(2) (2011), 22–30.Search in Google Scholar

[21] KHAN, V. A.—TUBA, U.: On paranormed Ideal convergent sequence spaces defined by Jordan totient function, J. Inequal. Appl. 1 (2021), 1–16.10.1186/s13660-021-02634-7Search in Google Scholar

[22] KHAN, V. A.—KHAN, Y.—HIRA, F.: Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math. Stat. 3(1) (2019), Art. ID 1267904.10.1080/23311835.2016.1267904Search in Google Scholar

[23] KONWAR, N.—ESI, A.—DEBNATH, P.: New fixed point theorems via contraction mappings in complete intuitionistic fuzzy normed linear space, New Math. Nat. Comput. 15(1) (2019), 1–19.10.1142/S1793005719500042Search in Google Scholar

[24] KOSTYRKO, P.—MÁČAJ, T.: I-Convergence and extremal I-limit points, Math. Slovaca 55(4) (2005), 443–464.Search in Google Scholar

[25] KOSTYRKO, P.—WILCZYŃSKI, W.—ŠALÁT, T.: I-convergence, Real Anal. Exchange 26(2) (2000), 669–686.10.2307/44154069Search in Google Scholar

[26] LASCARIDES, C. G.—MADDOX, I. J.: Matrix transformations between some classes of sequences, Math. Proc. Cambridge Philos. Soc. 68(1) (1970), 99–104.10.1017/S0305004100001109Search in Google Scholar

[27] MADDOX, I. J.: Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100(1) (1986), 161–166.10.1017/S0305004100065968Search in Google Scholar

[28] MOHIUDDINE, S. A.—HAZARIKA, B.: Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat 31(6) (2017), 1827–1834.10.2298/FIL1706827MSearch in Google Scholar

[29] MURSALEEN, M.—MOHIUDDINE, S. A.: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233(2) (2009), 142–149.10.1016/j.cam.2009.07.005Search in Google Scholar

[30] PARK, J. H.: Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22(5) (2004), 1039–1046.10.1016/j.chaos.2004.02.051Search in Google Scholar

[31] SAADATI, R.—PARK, J. H.: On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals27(2) (2006), 331–344.10.1016/j.chaos.2005.03.019Search in Google Scholar

[32] SAADATI, R.—VAEZPOUR, S. M.: Some results on fuzzy Banach spaces, J. Appl. Math. Comput. 17(1) (2005), 475–484.10.1007/BF02936069Search in Google Scholar

[33] SAVAŞ, E.—GÜRDAL, M.: Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 27(4) (2014), 1621–1629.10.3233/IFS-141128Search in Google Scholar

[34] SCHWEIZER, B.—SKLAR, A.: Statistical metric spaces, Pacific J. Math. 10(1) (1960), 313–334.10.2140/pjm.1960.10.313Search in Google Scholar

[35] SUBRAMANIAN, N.—ESI, A.—OZDEMIR, M. K.: Some new triple intuitionistic sequence spaces of fuzzy numbers defined by Musielak-Orlicz function, J. Assam Acad. Math. 7 (2017), 14–27.Search in Google Scholar

[36] TRIPATHY, B. C.—HAZARIKA, B.: Paranorm I-convergent sequence spaces, Math. Slovaca 59(4) 2009, 485–494.10.2478/s12175-009-0141-4Search in Google Scholar

[37] ŠALÁT, T.—ZIMAN, M.: On some properties of I-convergence, Tatra Mt. Math. Publ. 28(2) (2004), 274–286.Search in Google Scholar

[38] WILANSKY, A.: Summability through Functional Analysis. North Holland Mathematics Studies 85, 1984.Search in Google Scholar

[39] YAYING, T.—HAZARIKA, B.: On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca 70(3) (2020), 697–706.10.1515/ms-2017-0383Search in Google Scholar

Received: 2022-03-07
Accepted: 2022-04-27
Published Online: 2023-03-31
Published in Print: 2023-04-01

© 2023 Mathematical Institute Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0033/html
Scroll to top button