Home Mathematics The Asymptotics of the Geometric Polynomials
Article Open Access

The Asymptotics of the Geometric Polynomials

  • Igoris Belovas
Published/Copyright: March 31, 2023
Become an author with De Gruyter Brill

Abstract

The paper investigates the asymptotic behavior of the geometric polynomials, when the polynomial degree tends to infinity. Using the contour integration technique, we obtain an asymptotic formula, given explicitly in terms of the polynomial degree and variable. This type of asymptotics will be applied to derive limit theorems for combinatorial numbers.

2020 Mathematics Subject Classification: Primary 11B83; Secondary 41A60

1. Introduction

Geometric polynomials ωn(x) are defined by the exponential generating function

11x(et1)=n=0ωn(x)tnn!.

Alternatively, the geometric polynomial of degree n is given by

ωn(x)=k=0nk!S(n,k)xk,

where S(n, k) stand for the Stirling numbers of the second kind. An overview of properties and applications of the geometric polynomials can be found in [8,11,19]. Here are the first five geometric polynomials,

ω0(x)=1,ω1(x)=x,ω2(x)=2x2+x,ω3(x)=6x3+6x2+x,ω4(x)=24x4+36x3+14x2+x.

The geometric polynomials, as well as related exponential polynomials, are important instruments in obtaining limit theorems for combinatorial numbers satisfying a class of triangular arrays. In a series of works [47], we have received such central and local limit theorems for the combinatorial numbers associated with the Riemann zeta function.

The asymptotic expansion for the exponential polynomials recently has been established by Paris [21]. Similar asymptotic formulas for different polynomials also have attracted the attention of many researchers; see, for instance, the results of Alfaro et al. [1] for the generalized Freud polynomials, Barbero et al. [2] for the Appell polynomials, Corcino and Corcino [13] for the Genocchi polynomials, Lee and Wong [16] for the Tricomi–Carlitz polynomials, Li et al. [17] for the Wilson polynomials, Paris [20] for the generalized Hermite–Bell polynomials, Wang et al. [22, 23] for the Racah polynomials. This paper aims to extend these investigations and receive the geometric polynomials’ asymptotics. The asymptotics will be applied to derive limit theorems for combinatorial numbers. Note that the asymptotic approximation for the special case of x = 1 has been addressed in [14, 15, 18].

2. The asymptotics of ωn(x) for large n

The exponential polynomials [3, 9, 10],

Tn(x)=k=0nS(n,k)xk,

and the geometric polynomials are connected by the relation [8],

2.1 ωn(x)=0Tn(xt)etdt.

The exponential polynomials, for their part, have the integral representation (cf. formula (2.3) of [12: Section 2]),

2.2 Tn(x)=2n!πτn0πsin(nθ)ex(eτcosθcos(τsinθ)1)sin(xeτcosθsin(τsinθ))dθ.
Theorem 2.1.

Let x > 0 be fixed. Then

2.3 ωn(x)=n!(1+x)lnn+1(1+1/x)(1+O(1+4π2ln2(1+1/x))(n+1)/2)

as n → ∞.

Proof. First we reduce the expression of ωn(x) to a simpler form. Combining (2.1) and (2.2) we obtain

2.4 ωn(x)=2n!πτn0πsin(nθ)(0eu(x,τ,θ)tsin(v(x,τ,θ)t)dt)dθ,

where

2.5 u(x,τ,θ)=1+xxeτcosθcos(τsinθ),v(x,τ,θ)=xeτcosθsin(τsinθ).

Let c0 = min(ln(1 + x−1), π/2). Note that for x > 0, θ ∈ (0, π) and τ ∈ (0, c0), we have u(x, τ, θ) > 0. Thus,

2.6 ωn(x)=2n!πτn0πv(x,τ,θ)sin(nθ)u2(x,τ,θ)+v2(x,τ,θ)dθ.

Next, we notice that the integral expression (2.6) does not yield to the techniques of elementary calculus. We will evaluate it using contour integration. Let us denote the denominator in (2.6) by D(x, τ, θ),

2.7 D(x,τ,θ)=u2(x,τ,θ)+v2(x,τ,θ)=(1+x)22x(1+x)eτcosθcos(τsinθ)+x2e2τcosθ=((eτeiθ1)x1)((eτeiθ1)x1).

Zeros of the function are

2.8 θn,k=arctan(2πkln(1+x1))+2πn±i2ln(ln2(1+x1)+(2πk)2)ilnτ,

where n, k.

Suppose x0 = 1/(e – 1). Let us consider two cases.

Case 1. First we consider the integral (2.6) for x ∈ (0, x0). Noticing that u(x, τ, θ) is even in θ and v(x, τ, θ) is odd in θ, we get

2.9 ωn(x)=n!πτnππv(x,τ,θ)D(x,τ,θ)sinnθdθ=n!πτnJππv(x,τ,θ)D(x,τ,θ)einθdθ.:=Jn(x,τ)

To evaluate the integral (2.9), we apply the contour integral of the corresponding complex-valued function over the rectangular contour,

2.10 γv(z,τ,z)D(x,τ,z)einz:=f(z)dz.

Let us denote the vertices of the rectangular contour γ as A(−π, 0), B(π, 0), C(π, R) and D(−π, R). By the residue theorem, we have that, while R goes to infinity,

2.11 γ=AB+BC+CD+DA=2πik=+Resz=θ0,k+f(z),

here

2.12 θ0,k+=arctan(2πkln(1+x1))+i2ln(ln2(1+x1)+(2πk)2)ilnτ,

and f(z) stands for an integrand. Note that

2.13 eiθ0,k+=τ(ln(1+x1)i2πk)1:=ξk.

Next we evaluate integrals over the sides of the rectangular contour γ (cf. (2.11)).

Side BC. We parametrize the side BC by z = π + it, dz = idt and evaluate the integral using Watson’s lemma. We have

2.14 BC=i0Rv(x,τ,π+it)D(x,τ,π+it)ein(π+it)dt=i2eiπnx0Reτcoshtsinh(τsinht)((eτet1)x1)((eτet1)x1)entdt=(1)nxn2τeτ((eτ1)x1)2(1+O(1n)).

Side DA. Similarly, we parametrize the side DA by z = −π + it, dz = idt and evaluate the integral using Watson’s lemma. We receive

2.15 DA=i0Rv(x,τ,π+it)D(x,τ,π+it)ein(π+it)dt=i2eiπnx0Reτcoshtsinh(τsinht)((eτet1)x1)((eτet1)x1)entdt=(1)n+1xn2τeτ((eτ1)x1)2(1+O(1n)).

Side CD. We parametrize the side CD by z = t + iR, dz = dt. We get

2.16 CD=ππv(x,τ,t+iR)D(x,τ,t+iR)ein(t+iR)dt=enRππv(x,τ,t+iR)D(x,τ,t+iR)eintdtR0.

Next, by applying the residue theorem to the integral (2.10), we obtain

2.17 γf(z)dz=γv(x,τ,z)((eτeiz1)x1)((eτeiz1)x1)einzdz=2πik=+Resz=θ0,k+f(z).

Note that (cf. (2.12))

2.18 (exp(τexp(iθ0,k+))1)x1=0exp(τξk1)=1+1x,

hence, by (2.13), we have

2.19 v(x,τ,θ0,k+)=xexp(τeiθ0,k++eiθ0,k+2)eiτsinθ0,k+eiτsinθ0,k+2i=x2i(exp(eiθ0,k+))τ/2(exp(eiθ0,k+))τ/2×(exp(iτeiθ0,k+eiθ0,k+2i)exp(iτeiθ0,k+eiθ0,k+2i))=x2i(expξk)τ/2(expξk1)τ/2×(exp(τξkξk12)exp(τξkξk12))=xeτξkeτξk12i=xexp(τeiθ0,k+)(1+x1)2,

and, by (2.13), (2.18) and (2.19), we calculate the residues

2.20 Resz=θ0,k+f(z)=v(x,τ,θ0,k+)einθ0,k+(exp(τeiθ0,k+)1)x1limzθ0,k+zθ0,k+(eτeiz1)x1=x(exp(τeiθ0,k+)(1+x1))einθ0,k+2i((exp(τeiθ0,k+)1)x1)(xexp(τeiθ0,k+)τeiθ0,k+(i))=(eτξk(1+x1))ξkn+12((eτξk1)x1)(1+x1)τ=ξkn+12(x+1)τ.

Combining (2.11), (2.14), (2.15) and (2.16), we obtain that

2.21 JJn(x,τ)=π(1+x)τJ(ik=+ξkn+1)=π(1+x)τk=+ξkn+1.

Next, combining (2.9) and (2.21), we get

2.22 ωn(x)=n!πτnJJn(x,τ)=n!(1+x)τn+1k=+ξkn+1=n!(1+x)τn+1k=+τn+1(ln(1+x1)i2πk)n+1=n!1+xk=+cos((n+1)ηk)(ln2(1+x1)+(2πk)2)n+12=n!1+x(1lnn+1(1+x1)+k=12cos((n+1)ηk)(ln2(1+x1)+(2πk)2)n+12),

where ηk=arctan(2πkln(1+x1)). Note that ln (1 + x−1) > 1. Thus, we receive the statement of the theorem

2.23 ωn(x)=n!(1+x)lnn+1(1+x1)(1+O((1+4π2ln2(1+x1))n+12))

for the first interval.

Case 2. Now let us consider the integral (2.6) for x ∈ (x0, +∞). We compute ωn(x) (cf. (2.9)),

2.24 ωn(x)=n!πτnππv(x,τ,θ)D(x,τ,θ)sinnθdθ=n!πτnJππv(x,τ,θ)D(x,τ,θ)einθdθ,:=Yn(x,τ)

integrating

2.25 δv(x,τ,z)D(x,τ,z)einz:=g(z)dz

over the rectangular contour δ with vertices A(−π, 0), B(π, 0), C′(π, −R) and D′(−π, −R). By the residue theorem, we have that, while R goes to infinity,

2.26 δ=AB+BC+CD+DA=2πik=+Resz=θ0,kg(z),

here

2.27 θ0,k=arctan(2πkln(1+x1))i2ln(ln2(1+x1)+(2πk)2)+ilnτ,

and g(z) stands for an integrand. Note that

2.28 eiθ0,k=τ1(ln(1+x1)+i2πk):=ζk.

Next we evaluate integrals over the sides of the rectangular contour δ (cf. (2.26)).

Side BC′. We parametrize the side BC′ by z = π – it, dz = −idt and evaluate the integral using Watson’s lemma. We get

2.29 BC=i0Rv(x,τ,πit)D(x,τ,πit)ein(πit)dt=i2eiπnx0Reτcoshtsinh(τsinht)((eτet1)x1)((eτet1)x1)entdt=(1)n+1xn2τeτ((eτ1)x1)2(1+O(1n)).

Side D′A. Similarly, we parametrize the side DA by z = −π – it, dz = −idt and evaluate the integral using Watson’s lemma. We have

2.30 DA=i0Rv(x,τ,πit)D(x,τ,πit)ein(πit)dt=i2eiπnx0Reτcoshtsinh(τsinht)((eτet1)x1)((eτet1)x1)entdt=(1)n+1n2τeτ((eτ1)x1)2(1+O(1n)).

Side C′D′. We parametrize the side CD′ by z = t – iR, dz = dt. We get

2.31 CD=ππv(x,τ,tiR)D(x,τ,tiR)ein(tiR)dt=enRππv(x,τ,tiR)D(x,τ,tiR)eintdtR0.

Next, by applying the residue theorem to the integral (2.25), we receive

2.32 δg(z)dz=δv(x,τ,z)((eeiz1)x1)((eeiz1)x1)einzdz=2πik=+Resz=θ0,kg(z).

Note that (cf. (2.27) and (2.28))

2.33 (exp(τexp(iθ0,k))1)x1=0exp(τζk)=1+1x,

hence,

2.34 v(x,τ,θ0,k)=xexp(τeiθ0,k+eiθ0,k2)eiτsinθ0,keiτsinθ0,k2i=x2i(exp(eiθ0,k))τ/2(exp(eiθ0,k))τ/2×(exp(iτeiθ0,keiθ0,k2i)exp(iτeiθ0,keiθ0,k2i))=x2i(expζk)τ/2(expζk1)τ/2×(exp(τζkζk12)exp(τζkζk12))=xeτζkeτζk12i=x(1+x1)exp(τeiθ0,k)2i,

and, by (2.28), (2.34) and (2.35), we obtain the residues

2.35 Resz=θ0,kg(z)=v(x,τ,θ0,k)einθ0,k(exp(τeiθ0,k)1)x1limzθ0,kzθ0,k(eτeiz1)x1=x(1+x1exp(τeiθ0,k))einθ0,k2i((exp(τeiθ0,k)1)x1)(xexp(τeiθ0,k)τeiθ0,ki)=(1+x1eτζk1)ζk(n+1)2((eτζk11)x1)(1+x1)τ=ζk(n+1)2(x+1)τ.

Combining (2.26), (2.29), (2.30) and (2.31), we receive that

2.36 JYn(x,τ)=πτ(1+x)J(ik=+ζk(n+1))=πτ(1+x)k=+ζk(n+1).

Next, combining (2.24) and (2.36), we get

2.37 ωn(x)=n!πτnJYn(x,τ)=n!(1+x)τn+1k=+ζk(n+1)=n!(1+x)τn+1k=+τn+1(ln(1+x1)+i2πk)n+1=n!1+x(1lnn+1(1+x1)+k=12cos((n+1)ηk)(ln2(1+x1)+(2πk)2)n+12),

where ηk=arctan(2πkln(1+x1)). Note that ln (1 + x−1) ∈ (0, 1). Thus, we receive the statement of the theorem

2.38 ωn(x)=n!(1+x)lnn+1(1+x1)(1+O((1+4π2ln2(1+x1))n+12))

for the second interval.

Finally, considering two one-sided limits, limxx0ωn(x) (see (2.23), Case 1) and limxx0ωn(x) (see (2.38), Case 2), we receive

ωn(x0)=(1e1)n!(1+O((11+4π2)n+12)),

thus concluding the proof of the theorem. □


(Communicated by Marek Balcerzak)


Acknowledgements

The author would like to thank anonymous reviewers for their careful reading of the manuscript and for providing constructive comments and suggestions, which have helped improve the quality of the paper.

References

[1] ALFARO, M.—MORENO-BALCÁZAR, J. J.—PEÑA, A.—REZOLA, M. L.: Asymptotic formulae for generalized Freud polynomials, J. Math. Anal. Appl. 421(1) (2015), 474–488.10.1016/j.jmaa.2014.07.026Search in Google Scholar

[2] FERNANDO BARBERO, J.—SALAS, J.—VILLASEÑOR, E. J. S.: On the asymptotics of the rescaled Appell polynomials, Adv. Appl. Math. 113 (2020), Art. ID 101962.10.1016/j.aam.2019.101962Search in Google Scholar

[3] BELL, E. T.: Exponential polynomials, Ann. Math. 35(2) (1934), 258–277.10.2307/1968431Search in Google Scholar

[4] BELOVAS, I.: A central limit theorem for coefficients of the modified Borwein method for the calculation of the Riemann zeta-function, Lith. Math. J. 59(1) (2019), 17–23.10.1007/s10986-019-09421-4Search in Google Scholar

[5] BELOVAS, I.: A local limit theorem for coefficients of modified Borwein’s method, Glas. Mat. Ser. III. 54(1) (2019), 1–9.10.3336/gm.54.1.01Search in Google Scholar

[6] BELOVAS, I.—SABALIAUSKAS, M.: Series with binomial-like coefficients for the evaluation and 3D visualization of zeta functions, Informatica 31(4) (2020), 659–680.10.15388/20-INFOR434Search in Google Scholar

[7] BELOVAS, I.—SAKALAUSKAS, L.: Limit theorems for the coefficients of the modified Borwein method for the calculation of the Riemann zeta-function values, Colloq. Math. 151(2) (2018), 217–227.10.4064/cm7086-2-2017Search in Google Scholar

[8] BOYADZHIEV, K. N.: A series transformation formula and related polynomials, Int. J. Math. Math. 2005 (2005), Art. ID 792107.10.1155/IJMMS.2005.3849Search in Google Scholar

[9] BOYADZHIEV, K. N.: Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal. 2009 (2009), Art. ID 168672.10.1155/2009/168672Search in Google Scholar

[10] BOYADZHIEV, K. N.: Close encounters with the Stirling numbers of the second kind, Math. Mag. 85(4) (2012), 252–266.10.4169/math.mag.85.4.252Search in Google Scholar

[11] BOYADZHIEV, K. N.—DIL, A.: Geometric polynomials: properties and applications to series with zeta values, Anal. Math. 42 (2016), 203–224.10.1007/s10476-016-0302-ySearch in Google Scholar

[12] BRYCHKOV, Yu. A.: Some properties of the exponential polynomials, Integral Transforms Spec. Funct. 29(7) (2018), 571–579.10.1080/10652469.2018.1473394Search in Google Scholar

[13] CORCINO, C. B.—CORCINO, R. B.: Asymptotics of Genocchi polynomials and higher order Genocchi polynomials using residues, Afr. Mat. 31 (2020), 781–792.10.1007/s13370-019-00759-zSearch in Google Scholar

[14] GROSS, O. A.: Preferential arrangements, Amer. Math. Monthly 69(1) (1962), 4–8.10.1080/00029890.1962.11989826Search in Google Scholar

[15] KNUTH, D. E.: Minimum-Comparison Sorting (Section 5.3.1, Exercise 4). In: The Art of Computer Programming, Vol. 3, Addison Wesley, 1998, p. 194 and p. 653.Search in Google Scholar

[16] LEE, K. F.—WONG, R.: Asymptotic expansion of the Tricomi–Carlitz polynomials and their zeros, J. Comput. Appl. Math. 265 (2014), 220–242.10.1016/j.cam.2013.09.047Search in Google Scholar

[17] LI, Y.-T.—WANG, X.-S.—WONG, R.: Asymptotics of the Wilson polynomials, Anal. Appl. 18(2) (2020), 237–270.10.1142/S0219530519500076Search in Google Scholar

[18] MAHADEV, N. V. R.—PELED, U. N.: Enumeration (Chapter 17). In: Threshold Graphs and Related Topics, Annals of Discrete Mathematics 56, Elsevier, 1995, p. 474.Search in Google Scholar

[19] MIHOUBI, M.—TAHARBOUCHET, S.: Identities and congruences involving the geometric polynomials, Miskolc Math. Notes 20(1) (2020), 395–408.10.18514/MMN.2019.2498Search in Google Scholar

[20] PARIS, R. B.: The asymptotics of the generalised Hermite–Bell polynomials, J. Comput. Appl. Math. 232(2) (2009), 216–226.10.1016/j.cam.2009.05.031Search in Google Scholar

[21] PARIS, R. B.: The asymptotics of the Touchard polynomials, Math. Aeterna 6(5) (2016), 765–779.Search in Google Scholar

[22] WANG, X.-S.—WONG, R.: Asymptotics of Racah polynomials with varying parameters, J. Math. Anal. Appl. 436(2) (2016), 1149–1164.10.1016/j.jmaa.2015.12.035Search in Google Scholar

[23] WANG, X.-S.—WONG, R.: Asymptotics of Racah polynomials with fixed parameters, Proc. Amer. Math. Soc. 146 (2018), 1083–1096.10.1090/proc/13771Search in Google Scholar

Received: 2021-08-09
Accepted: 2022-03-28
Published Online: 2023-03-31
Published in Print: 2023-04-01

© 2023 Mathematical Institute Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0026/html
Scroll to top button