Startseite Subordination-implication problems concerning the nephroid starlikeness of analytic functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Subordination-implication problems concerning the nephroid starlikeness of analytic functions

  • Anbhu Swaminathan EMAIL logo und Lateef Ahmad Wani
Veröffentlicht/Copyright: 16. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let A be the set of all analytic functions f defined on the open unit disk D satisfying f(0) = f'(0) 1 = 0. Let φNe(z) := 1 + z − z3=3 be the recently introduced Carathéodory function which maps the unit circle D D onto a 2-cusped kidney-shaped curve called nephroid given by ((u1)2+v24a)34v22=0. In this paper, we determine the best possible estimate on the real β so that for some analytic p satisfying p(0) = 1 the following subordination-implication holds:

1+βzp(z)pj(z)F(z)p(z)φNe(z),j=0,1,2,

where F(z) is some Carathéodory function with special geometries like right/left-half of Bernoulliφs lemniscate, cardioid, lune, eight-shaped, etc. As applications, we establish sufficient conditions for the Ma-Minda family of nephroid starlike functions given by

SNe*:={ fA:zf(z)f(z)φNe(z) }.
MSC 2010: Primary 30C45; 30C80

This work was supported by the Project No. CRG/2019/000200/MS of Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India.


Acknowledgement

The authors would like to express their gratitude to the anonymous referees for their thoughtful comments and efforts towards improving the paper.

  1. (Communicated by Stanisława Kanas)

References

[1] AHUJA, O. P. — KUMAR, S. — RAVICHANDRAN, V.: Applications of first order differential subordination for functions with positive real part, Stud. Univ. Babeş-Bolyai Math. 63 (2018), 303-311.10.24193/subbmath.2018.3.02Suche in Google Scholar

[2] ALI, R. M. — JAIN, N. K. — RAVICHANDRAN, V.: Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), 6557-6565.10.1016/j.amc.2011.12.033Suche in Google Scholar

[3] ALI, R. M. — RAVICHANDRAN, V. — SEENIVASAGAN, N.: Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. 2007, Art. ID 62925.10.1155/2007/62925Suche in Google Scholar

[4] ALI, R. M. — CHO, N. E. — RAVICHANDRAN, V. — KUMAR, S. S.: Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012), 1017-1026.10.11650/twjm/1500406676Suche in Google Scholar

[5] CHO, N. E. — KUMAR, V. — KUMAR, S. S. — RAVICHANDRAN, V.: Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), 213-232.10.1007/s41980-018-0127-5Suche in Google Scholar

[6] GANDHI, S. — RAVICHANDRAN, V.: Starlike functions associated with a lune, Asian-Eur. J. Math. 10 (2017), 1-12.10.1142/S1793557117500644Suche in Google Scholar

[7] GAVRIŞ, E.: Differential subordinations and Pythagorean means, Math. Slovaca 70 (2020), 1135-1140.10.1515/ms-2017-0419Suche in Google Scholar

[8] GOEL, P. — KUMAR, S. S.: Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43 (2020), 957-991.10.1007/s40840-019-00784-ySuche in Google Scholar

[9] JANOWSKI, W.: Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297-326.10.4064/ap-28-3-297-326Suche in Google Scholar

[10] KUMAR, S. S. — KUMAR, V. — RAVICHANDRAN, V. — CHO, N. E.: Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), Art No. 176.10.1186/1029-242X-2013-176Suche in Google Scholar

[11] KUMAR, S. — RAVICHANDRAN, V.: Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (2018), 1179-1191.10.1007/s11785-017-0690-4Suche in Google Scholar

[12] MA, W. C. — MINDA, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Z. Li, F.Ren, L. Yang and S. Zhang, eds.), Int. Press, 1994, pp. 157-169.Suche in Google Scholar

[13] MENDIRATTA, R. — NAGPAL, S. — RAVICHANDRAN, V.: A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), 1-17.10.1142/S0129167X14500906Suche in Google Scholar

[14] MENDIRATTA, R. — NAGPAL, S. — RAVICHANDRAN, V.: On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365-386.10.1007/s40840-014-0026-8Suche in Google Scholar

[15] MILLER, S. S. — MOCANU, P. T.: Differential Subordinations. Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.Suche in Google Scholar

[16] NAZ, A. — NAGPAL, S. — RAVICHANDRAN, V.: Exponential starlikeness and convexity of confluent hyper-geometric, Lommel, and Struve functions, Mediterr. J. Math. 17 (2020), 1-22.10.1007/s00009-020-01621-4Suche in Google Scholar

[17] NUNOKAWA, M. — OBRADOVIĆ, M. — OWA, S.: One criterion for univalency, Proc. Amer. Math. Soc. 106 (1989), 1035-1037.10.1090/S0002-9939-1989-0975653-5Suche in Google Scholar

[18] OMAR, R. — HALIM, S. A.: Differential subordination properties of Sokół-Stankiewicz starlike functions, Kyungpook Math. J. 53 (2013), 459-465.10.5666/KMJ.2013.53.3.459Suche in Google Scholar

[19] SHARMA, K. — JAIN, N. K. — RAVICHANDRAN, V.: Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), 923-939.10.1007/s13370-015-0387-7Suche in Google Scholar

[20] SOKÓŁ, J. — STANKIEWICZ, J.: Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996), 101-105.Suche in Google Scholar

[21] SWAMINATHAN, A. — WANI, L. A.: Sufficient conditions and radii problems for a starlike class involving a differential inequality, Bull. Korean Math. Soc. 57 (2020), 1409-1426.Suche in Google Scholar

[22] WANI, L. A. — SWAMINATHAN, A.: Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), 1-20.10.1007/s13398-020-00913-4Suche in Google Scholar

[23] WANI, L. A. — SWAMINATHAN, A.: Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), 79-104.10.1007/s40840-020-00935-6Suche in Google Scholar

Received: 2021-04-13
Accepted: 2021-09-11
Published Online: 2022-10-16
Published in Print: 2022-10-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0081/pdf?lang=de
Button zum nach oben scrollen