Home Generalized hyperharmonic number sums with reciprocal binomial coefficients
Article
Licensed
Unlicensed Requires Authentication

Generalized hyperharmonic number sums with reciprocal binomial coefficients

  • Rusen Li
Published/Copyright: October 16, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we mainly show that generalized hyperharmonic number sums with reciprocal binomial coefficients can be expressed in terms of classical (alternating) Euler sums, zeta values and generalized (alternating) harmonic numbers.

MSC 2010: 05A10; 11B65; 11B68; 11B83; 11M06
  1. (Communicated by István Gaál)

Acknowledgement

The author is grateful to the referee for her/his useful comments and suggestions.

References

[1] ABEL, N. H.: Untersuchungen über die Reihe J. Reine Angew Math. 1 (1826), 311–339.10.1515/crll.1826.1.311Search in Google Scholar

[2] BAILEY, D. H. — BORWEIN, J. M. — GIRGENSOHN, R.: Experimental evaluation of Euler sums, Experiment. Math. 3(1) (1994), 17–30.10.1080/10586458.1994.10504573Search in Google Scholar

[3] BENJAMIN, A. T. — GAEBLER, D. — GAEBLER, R.: A combinatorial approach to hyperharmonic numbers, Integers 3 (2003), Art. Id. A15.Search in Google Scholar

[4] BERNDT, B. C.: Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.10.1007/978-1-4612-1088-7Search in Google Scholar

[5] CHEN, W. Y. C. — FU, A. M. — ZHANG, I. F.: Faulhaber’s theorem on power sums, Discrete Math. 309 (2009), 2974–2981.10.1016/j.disc.2008.07.027Search in Google Scholar

[6] CHU, W.: Abel’s lemma on summation by parts and basic hypergeometric series, Adv. Appl. Math. 39 (2007), 490–514.10.1016/j.aam.2007.02.001Search in Google Scholar

[7] CONWAY, J. H. — GUY, R. K.: The Book of Numbers, Springer, New York 1996.10.1007/978-1-4612-4072-3Search in Google Scholar

[8] DEVOTO, A. — DUKE, D. W.: Table of integrals and formulae for Feynman diagram calculations, La Rivista del Nuovo Cimento 7(6) (1984), 1–39.10.1007/BF02724330Search in Google Scholar

[9] DE DOELDER, P. J.: On some series containing ψ x − ψ y and (ψ x − ψ y))2 for certain values of x and y, J. Comput. Appl. Math. 37(1–3) (1991), 125–141.10.1016/0377-0427(91)90112-WSearch in Google Scholar

[10] DIL, A. — BOYADZHIEV, K. N.: Euler sums of hyperharmonic numbers, J. Number Theory 147 (2015), 490–498.10.1016/j.jnt.2014.07.018Search in Google Scholar

[11] DIL, A. — MEZŐ, I. — CENKCI, M.: Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41(6) (2017), 1640–1655.10.3906/mat-1603-4Search in Google Scholar

[12] FLAJOLET, P. — SALVY, B.: Euler sums and contour integral representations, Experiment. Math. 7(1) (1998), 15–35.10.1080/10586458.1998.10504356Search in Google Scholar

[13] KAMANO, K.: Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech. Ser. A 56(2) (2011), 11–15.Search in Google Scholar

[14] KNUTH, D. E.: The art of computer programming, Vols. 1–3, Addison-Wesley, Reading, Mass., 1968.Search in Google Scholar

[15] LI, R.: Euler sums of generalized hyperharmonic numbers, Funct. Approximatio, Comment. Math. 66(2) (2022), 179–189.10.7169/facm/1953Search in Google Scholar

[16] LI, R.: Euler sums of generalized alternating hyperharmonic numbers, Rocky Mountain J. Math. 51(4) (2021), 1299–1313.10.1216/rmj.2021.51.1299Search in Google Scholar

[17] MATSUOKA, Y.: On the values of a certain Dirichlet series at rational integers, Tokyo J. Math. 5(2) (1982), 399–403.10.3836/tjm/1270214900Search in Google Scholar

[18] MEZŐ, I. — DIL, A.: Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), 360–369.10.1016/j.jnt.2009.08.005Search in Google Scholar

[19] ÖMÜR, N. — KOPARAL, S.: On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math. 11(3) (2018), Art. ID 1850045, 9 pp.10.1142/S1793557118500456Search in Google Scholar

[20] SOFO, A.: Harmonic number sums in higher powers, J. Math. Appl. 2(2) (2011), 15–22.Search in Google Scholar

[21] SOFO, A.: Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144–159.10.1016/j.jnt.2015.02.013Search in Google Scholar

[22] SOFO, A.: Second order alternating harmonic number sums, Filomat 30(13) (2016), 3511–3524.10.2298/FIL1613511SSearch in Google Scholar

Received: 2021-05-17
Accepted: 2021-08-21
Published Online: 2022-10-16
Published in Print: 2022-10-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0076/html
Scroll to top button