Startseite Gini index on generalized r-partitions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gini index on generalized r-partitions

  • Toufik Mansour , Matthias Schork , Mark Shattuck EMAIL logo und Stephan Wagner
Veröffentlicht/Copyright: 16. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Gini index of a set partition π of size n is defined as 1δ(π)n2, where δ(π) is the sum of the squares of the block cardinalities of π. In this paper, we study the distribution of the δ statistic on various kinds of set partitions in which the first r elements are required to lie in distinct blocks. In particular, we derive the generating function for the distribution of δ on a generalized class of r-partitions wherein contents-ordered blocks are allowed and elements meeting certain restrictions may be colored. As a consequence, we obtain simple explicit formulas for the average δ value, equivalently for the average Gini index, in all r-partitions, r-permutations and r-Lah distributions of a given size. Finally, combinatorial proofs can be found for these formulas in the case r = 0 corresponding to the Gini index on classical set partitions, permutations and Lah distributions.



  1. (Communicated by Gejza Wimmer)

References

[1] BALAJI, H. — MAHMOUD, H.: The Gini index of random trees with an application to caterpillars, J. Appl. Probab. 54 (2017), 701–709.10.1017/jpr.2017.28Suche in Google Scholar

[2] BELBACHIR, H. — BELKHIR, A.: Cross recurrence relations for r-Lah numbers, Ars Combin. 110 (2013), 199–203.Suche in Google Scholar

[3] BRODER, A. Z.: The r-Stirling numbers, Discrete Math. 49 (1984), 241–259.10.1016/0012-365X(84)90161-4Suche in Google Scholar

[4] CHEON, G.-S. — JUNG, J.-H.: r-Whitney numbers of Dowling lattices, Discrete Math. 312 (2012), 2337–2348.10.1016/j.disc.2012.04.001Suche in Google Scholar

[5] DOMICOLO, D. — MAHMOUD, H.: Degree-based Gini index for graphs, Probab. Engrg. Inform. Sci. 34 (2020), 157–171.10.1017/S0269964819000044Suche in Google Scholar

[6] FARRIS, F. A.: The Gini index and measures of inequality, Amer. Math. Monthly 117 (2010), 851–864.10.4169/000298910x523344Suche in Google Scholar

[7] FLAJOLET, P. — SEDGEWICK, R.: Analytic Combinatorics, Cambridge University Press, 2009.10.1017/CBO9780511801655Suche in Google Scholar

[8] GINI, C.: Variabilitá e Mutabilitá: Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche, C. Cuppini, Bologna, 1912.Suche in Google Scholar

[9] GOSWAMY, S. — MURTY, C. A. — DAS, A. K.: Sparsity measure of a network graph: Gini index, Inform. Sci. 462 (2018), 16–39.10.1016/j.ins.2018.05.044Suche in Google Scholar

[10] GRAHAM, R. L. — KNUTH, D. E. — PATASHNIK, O.: Concrete Mathematics: A Foundation for Computer Science, second edition, Addison-Wesley, Boston, 1994.Suche in Google Scholar

[11] HSU, L. C.–SHIUE, P. J.-S.: A unified approach to generalized Stirling numbers, Adv. Appl. Math. 20 (1998), 366–384.10.1006/aama.1998.0586Suche in Google Scholar

[12] KOPITZKE, P.: The Gini index of an integer partition, J. Integer Seq. 23 (2020), Art. ID 20.9.7.Suche in Google Scholar

[13] MANSOUR, T.: Combinatorics of Set Partitions, Chapman   Hall/CRC, Taylor   Francis Group, Boca Raton, 2012.10.1201/b12691Suche in Google Scholar

[14] MANSOUR, T. — SCHORK, M. — SHATTUCK, M.: On a new family of generalized Stirling and Bell numbers, Electron. J. Combin. 18 (2011), #P77.10.37236/564Suche in Google Scholar

[15] MERRIS, R.: The p-Stirling numbers, Turkish J. Math. 24 (2000), 379–399.Suche in Google Scholar

[16] MEZÖ, I.: The r-Bell numbers, J. Integer Seq. 14 (2011), Art. ID 11.1.1.Suche in Google Scholar

[17] MIHOUBI, M. — RAHMANI, M.: The partial r-Bell polynomials, Afrika Mat. 28 (2017), 1167–1183.10.1007/s13370-017-0510-zSuche in Google Scholar

[18] NYUL, G. — RÁCZ, G.: The r-Lah numbers, Discrete Math. 338 (2015), 1660–1666.10.1016/j.disc.2014.03.029Suche in Google Scholar

[19] RAMÌREZ, J. L. — SHATTUCK, M.: A (p, q)-analogue of the r-Whitney-Lah numbers, J. Integer Seq. 19 (2016), Art. ID 16.5.6.Suche in Google Scholar

[20] SHATTUCK, M.: Generalized r-Lah numbers, Proc. Indian Acad. Sci. (Math Sci.) 126(4) (2016), 461–478.10.1007/s12044-016-0309-0Suche in Google Scholar

[21] SIMOVICI, D. A.: Several remarks on metrics on partition lattices and their applications in data mining, Libertas Math. 30 (2010), 19–31.Suche in Google Scholar

[22] SIMOVICI, D. A.: Entropies on bounded lattices. Proceedings of the 41st IEEE International Symposium on Multiple-Valued Logic, 2011, pp. 307–312.10.1109/ISMVL.2011.18Suche in Google Scholar

[23] SIMOVICI, D. A. — JAROSZEWICZ, S.: An axiomatization of partition entropy, IEEE Trans. Inform. Theory 48 (2002), 2138–2142.10.1109/TIT.2002.1013159Suche in Google Scholar

[24] SIMOVICI, D. A. — SIZOV, R.: On partition metric space, index function, and data compression, Sci. Ann. Comput. Sci. 28(1) (2018), 141–156.10.7561/SACS.2018.1.141Suche in Google Scholar

[25] WEISMAN, D. — SIMOVICI, D. A.: Several remarks on the metric space of genetic codes, Int. J. Data Mining and Bioinformatics 6(1) (2012), 17–26.10.1504/IJDMB.2012.045534Suche in Google Scholar

[26] ZHANG, P. — DEY, D.K.: The degree profile and Gini index of random caterpillar trees, Probab. Engrg. Inform. Sci. 33 (2019), 511–527.10.1017/S0269964818000475Suche in Google Scholar

Received: 2021-05-02
Accepted: 2021-09-08
Published Online: 2022-10-16
Published in Print: 2022-10-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0077/html?lang=de
Button zum nach oben scrollen