Startseite Mathematik Fuzzy ideal topological vector spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fuzzy ideal topological vector spaces

  • Fadhil Abbas EMAIL logo und Hassan A. Alhayo
Veröffentlicht/Copyright: 9. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the concept of fuzzy ideal topological vector spaces and study the basic properties of fuzzy-I-open and fuzzy-I-closed sets in fuzzy ideal topological vector spaces. Also, we study the properties of fuzzy-I-Hausdorff and fuzzy-I-compact in fuzzy ideal topological vector spaces. Furthermore, we introduce the concepts of fuzzy-I-homogenous space, fuzzy-I-monomorphism space, fuzzy-I-isomorphism space and fuzzy-I-automorphism space. Finally, we introduce the concepts of fuzzy-I-bounded set, fuzzy-I-balanced set, fuzzy-I-symmetric set and study their properties in fuzzy ideal topological vector spaces.

MSC 2010: Primary 54A40
  1. ( Communicated by Anatolij Dvurečenskij )

References

[1] CHANG, C: Fuzzy topological space, J. Math. Anal. Appl. 24 (1968), 182-190.10.1016/0022-247X(68)90057-7Suche in Google Scholar

[2] GROTHENDIECK, A.: Topological Vector Spaces, Gordon and Breach Science Publishers, New York, 1973.Suche in Google Scholar

[3] HAMLETT, T.—JANKOVIC, D.: New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310.10.1080/00029890.1990.11995593Suche in Google Scholar

[4] JAFARI, S.—RAJESH, N.: Ideal topological vector spaces, (2017); https://vixra.org/pdf/2001.0533vl.pdfSuche in Google Scholar

[5] KURATOWSKI, K.: Topology, NewYork: Academic Press, Vol: I, 1966.Suche in Google Scholar

[6] LIU, D.—KATSARAS, A.: Fuzzy vector spaces and fuzzy topological vector spaces, j. of math. anal. and apply. 58 (1977), 135-146.10.1016/0022-247X(77)90233-5Suche in Google Scholar

[7] LIU, Y.—PU, P.: Fuzzy topology I, J. Math. Anal. Appl. 76 (1980), 551–599.Suche in Google Scholar

[8] LIU, Y.—PU, P.: Fuzzy topology II, J. Math. Anal. Appl. 77 (1980), 20–37.10.1016/0022-247X(80)90258-9Suche in Google Scholar

[9] SARKAR: Fuzzy ideal theory, Fuzzy Sets and Systems 87 (1997), 117–123.10.1016/S0165-0114(96)00032-2Suche in Google Scholar

[10] VAIDYNATHASWAMY, R.: The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1944), 51–61.10.1007/BF03048958Suche in Google Scholar

[11] VAIDYNATHASWAMY, R.: Set Topology, Chelsea Publ. Comp, New York, 1960.Suche in Google Scholar

[12] ZADEH, L.: Fuzzy Sets, Information and Control 8 (1965), 338–353.10.1016/S0019-9958(65)90241-XSuche in Google Scholar

Received: 2021-03-05
Accepted: 2021-09-27
Published Online: 2022-08-09
Published in Print: 2022-08-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0069/html?lang=de
Button zum nach oben scrollen