Startseite Mathematik Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)-Kirchhoff type
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)-Kirchhoff type

  • Nguyen Thanh Chung EMAIL logo und Zohreh Naghizadeh
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with a class of fourth order elliptic equations of Kirchhoff type with variable exponent

Δp(x)2uM(Ω1p(x)|u|p(x)dx)Δp(x)u+|u|p(x)2u=λf(x,u)+μg(x,u) in Ω,u=Δu=0 on Ω,

where p:=infxΩ¯p(x)>max1,N2,λ>0 and μ ≥ 0 are real numbers, Ω ⊂ ℝN (N ≥ 1) is a smooth bounded domain, Δp(x)2u=Δ(|Δu|p(x)2Δu) is the operator of fourth order called the p(x)-biharmonic operator, Δp(x)u = div(|∇u|p(x)–2u) is the p(x)-Laplacian, p : Ω → ℝ is a log-Hölder continuous function, M : [0, +∞) → ℝ is a continuous function and f, g : Ω × ℝ → ℝ are two L1-Carathéodory functions satisfying some certain conditions. Using two kinds of three critical point theorems, we establish the existence of at least three weak solutions for the problem in an appropriate space of functions.

  1. Communicated by Alberto Lastra

References

[1] Afrouzi, G. A.—Mirzapour, M.—Chung, N. T.: Existence and multiplicity of solutions for Kirchhoff type problems involving p(x)-biharmonic operators, Z. Anal. Anwend. 33 (2014), 289–303.10.4171/ZAA/1512Suche in Google Scholar

[2] Ambrosetti, A.—Rabinowitz, P. H.: Dual variational methods in critical points theory and applicationss, J. Funct. Anal. 14 (1973), 349–381.10.1016/0022-1236(73)90051-7Suche in Google Scholar

[3] Avci, M.—Cekic, B.—Mashiyev, R. A.: Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci. 34(14) (2011), 1751–1759.10.1002/mma.1485Suche in Google Scholar

[4] Ayoujil, A.—Amrouss, A. R. E.: On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. (TMA) 71(14) (2009), 4916–4926.10.1016/j.na.2009.03.074Suche in Google Scholar

[5] Bae, J. H.—Kim, J. M.—Lee, J.—Part, K.: Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations, Bound. Value Probl. 2019 (2019), 125.10.1186/s13661-019-1237-6Suche in Google Scholar

[6] Ball, J.: Initial-boundary value for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61–90.10.1016/0022-247X(73)90121-2Suche in Google Scholar

[7] Bonanno, G.—Bisci, G. M.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), Art. ID 670675.10.1155/2009/670675Suche in Google Scholar

[8] Bonanno, G.: A critical point theorem via the Ekeland variational principles, Nonlinear Anal. (TMA) 75 (2012), 2292–3007.10.1016/j.na.2011.12.003Suche in Google Scholar

[9] Bonanno, G.—Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ. 244 (2008), 3031–3059.10.1016/j.jde.2008.02.025Suche in Google Scholar

[10] Bonanno, G.—Marano, S. A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1–10.10.1080/00036810903397438Suche in Google Scholar

[11] Boureanu, M. M.—Rădulescu, V.—Repovš, D. D.: On a (·)-biharmonic problem with no-flux boundary condition, Comput. Math. Appl. 72 (2016), 2505–2515.10.1016/j.camwa.2016.09.017Suche in Google Scholar

[12] Chung, N. T.: Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ. 58(12) (2013), 1637–1646.10.1080/17476933.2012.701289Suche in Google Scholar

[13] Chung, N. T.: Existence of solutions for perturbed fourth order elliptic equations with variable exponents, Electron. J. Qual. Theory Differ. Equ. 2018(96) (2018), 1–19.10.14232/ejqtde.2018.1.96Suche in Google Scholar

[14] Chung, N. T.: Infinitely many solutions for a class of p(x)-Kirchhoff type problems with critical exponents, Ann. Polon. Math. 124 (2020), 129–149.10.4064/ap180827-11-6Suche in Google Scholar

[15] Chung, N. T.: Multiple solutions for a fourth order elliptic equation of Kirchhoff type with variable exponent, Asian-European J. Math. 13(5) (2020). Art. ID 2050096.10.1142/S1793557120500965Suche in Google Scholar

[16] Chung, N. T.: Infinitely many solutions for some fourth order elliptic equations of p(x)-Kirchhoff type, Differ. Equ. Dyn. Syst. (2020); https://doi.org/10.1007/s12591-019-00513-8.10.1007/s12591-019-00513-8Suche in Google Scholar

[17] Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian, Appl. Anal. 92 (2013), 191–210.10.1080/00036811.2011.602633Suche in Google Scholar

[18] Diening, L.—Harjulehto, P.—Hästö, P.—Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.10.1007/978-3-642-18363-8Suche in Google Scholar

[19] Ekeland, I.: On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.10.1016/0022-247X(74)90025-0Suche in Google Scholar

[20] Ferrara, M.—Khademloo, S.—Heidarkhani, S.: Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316–325.10.1016/j.amc.2014.02.041Suche in Google Scholar

[21] Hamdani, M. K.—Harrabi, A.—Mtiri, F.—Repovs̆, D. D.: Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal. 190 (2020), 111598.10.1016/j.na.2019.111598Suche in Google Scholar

[22] Heidarkhani, S.—Khademloo, S.—Solimaninia, A.: Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math. (N.S.) 71(1) (2014), 39–61.10.4171/PM/1940Suche in Google Scholar

[23] Heidarkhani, S.—Ferrara, M.—Salari, A.—Caristi, G.: Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 61(11) (2016), 1494–1516.10.1080/17476933.2016.1182520Suche in Google Scholar

[24] Kováčik, O.—Rákosník, J.: On spaces Lp(x) and W1,p(x), Czechoslovak Math. J. 41 (1991), 592–618.10.21136/CMJ.1991.102493Suche in Google Scholar

[25] Liang, S.—Zhang, Z.: Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type with critical growth inN, J. Math. Phys. 57 (2016), 111505.10.1063/1.4967976Suche in Google Scholar

[26] Massar, M.—Hssini, El. M.—Tsouli, N.—Talbi, M.: Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (188) (2014), 33–51.10.22436/jmcs.08.01.04Suche in Google Scholar

[27] Rădulescu, V. D.—Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Boca Raton, 2015.10.1201/b18601Suche in Google Scholar

[28] Wang, F.—An, Y.: Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. 2012 (2012), Art. No. 6.10.1186/1687-2770-2012-6Suche in Google Scholar

[29] Wang, F.—Avci, M.—An, Y.: Existence of solutions for fourth-order elliptic equations of Kirchhoff type, J. Math. Anal. Appl. 409 (2014), 140–146.10.1016/j.jmaa.2013.07.003Suche in Google Scholar

[30] Wu, D. L.—Li, F.: Solutions for fourth-order Kirchhoff type elliptic equations involving concave-convex nonlinearities inN, Comput. Math. Appl. 79(2) (2020), 489–499.10.1016/j.camwa.2019.07.007Suche in Google Scholar

[31] Xu, L.—Chen, H.: Multiple solutions for the nonhomogeneous fourth order elliptic equations of Kirchhoff-type, Taiwanese J. Math. 19(4) (2015), 1215–1226.10.11650/tjm.19.2015.4716Suche in Google Scholar

[32] Yin, H.—Xu, M.: Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator, Ann. Polon. Math. 109 (2013), 47–54.10.4064/ap109-1-4Suche in Google Scholar

[33] Zang, A.—Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear. Anal. (TMA) 69 (2008), 3629–3636.10.1016/j.na.2007.10.001Suche in Google Scholar

[34] Zhang, W.—Tang, X.—Cheng, B.—Zhang, J.: Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type, Comm. Pure Appl. Anal. 15(6) (2016), 2161–2177.10.3934/cpaa.2016032Suche in Google Scholar

[35] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II, Springer, Berlin-Heidelberg-New York, 1985.10.1007/978-1-4612-5020-3Suche in Google Scholar

Received: 2020-05-14
Accepted: 2021-01-28
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0063/pdf
Button zum nach oben scrollen