Startseite Mathematik The Poincaré-Cartan forms of one-dimensional variational integrals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Poincaré-Cartan forms of one-dimensional variational integrals

  • Veronika Chrastinová und Václav Tryhuk EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fundamental concepts for variational integrals evaluated on the solutions of a system of ordinary differential equations are revised. The variations, stationarity, extremals and especially the Poincaré-Cartan differential forms are relieved of all additional structures and subject to the equivalences and symmetries in the widest possible sense. Theory of the classical Lagrange variational problem eventually appears in full generality. It is presented from the differential forms point of view and does not require any intricate geometry.

MSC 2010: 49–01; 49K15; 58A17; 70H45

This work is supported by the project of specific university research at Brno University of Technology, Czech Republic, FAST-S-20-6294.


  1. Communicated by Michal Fečkan

Acknowledgement

The editorial staff of Mathematica Slovaca deserves our sincere gratitude for having come to the view that the creative works should not be automatically rejected even if they look rather unusual and due to difficult and complex topic are not excellent in all respects.

References

[1] Bolza, O.: Vorlesungen űber Variationsrechnung, Neuausgabe. IX, S. Leipzig, Koehlers Antiquarium, 1933.Suche in Google Scholar

[2] Cartan, E.: Lecons sur les Invariants Intégraux, 3e éd., Paris: Hermann X, 1971 (in French).Suche in Google Scholar

[3] Hermann, R.: Differential form methods in the theory of variational systems and Lagrangian field theories, Acta Appl. Math. 12(1) (1988), 35–78.10.1007/BF00047568Suche in Google Scholar

[4] Chrastina, J.: The Formal Theory of Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 6, Masaryk University, Brno, 1998, 296 pp.Suche in Google Scholar

[5] Chrastina, J.: Examples from the calculus of variations Part I–IV, Math. Bohem. 125; 126 (2000; 2001), 55–76, 187–197; 93–111, 691–710.10.21136/MB.2000.126263Suche in Google Scholar

[6] Chrastinová, V.—Tryhuk, V.: The symmetry reduction of variational integrals, complement, Math. Bohem. 143(4) (2018), 431–439.10.21136/MB.2018.0111-17Suche in Google Scholar

[7] Chrastinová, V.—Tryhuk, V.: Report on the absolute differential equations I, Advances in Analysis 2(1) (2017), 41–61.10.22606/aan.2017.11007Suche in Google Scholar

[8] Chrastinová, V.—Tryhuk, V.: On the exact inverse problem of the calculus of variations, Advances in Analysis 2(3) (2017), 196–218.10.22606/aan.2017.23005Suche in Google Scholar

[9] Tryhuk, V.—Chrastinová, V.—Dlouhý, O.: The Lie group in infinite dimension, Abstr. Appl. Anal. 2011 (2011), Art. ID 919538, 35 pp.10.1155/2011/919538Suche in Google Scholar

[10] Tryhuk, V.—Chrastinová, V.: Automorphisms of ordinary differential equations, Abstr. Appl. Anal. 2014 (2014), Art. ID 482963, 32 pp.10.1155/2014/482963Suche in Google Scholar

[11] Tryhuk, V.—Chrastinová, V.: Automorphisms of curves, J. Nonlinear Math. Phys. 16(3) (2009), 259–281.10.1142/S1402925109000224Suche in Google Scholar

[12] Tryhuk, V.—Chrastinová, V.: The symmetry reduction of variational integrals, Math. Bohem. 143(3) (2018), 291–328.10.21136/MB.2017.0008-17Suche in Google Scholar

Received: 2019-09-26
Accepted: 2020-03-28
Published Online: 2020-12-10
Published in Print: 2020-12-16

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0439/pdf
Button zum nach oben scrollen