Startseite Mathematik Remarks on some generalization of the notion of microscopic sets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Remarks on some generalization of the notion of microscopic sets

  • Aleksandra Karasińska EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider properties of defined earlier families of sets which are microscopic (small) in some sense. An equivalent definition of considered families is given, which is helpful in simplifying a proof of the fact that each Lebesgue null set belongs to one of these families. It is shown that families of sets microscopic in more general sense have properties analogous to the properties of the σ-ideal of classic microscopic sets.

MSC 2010: 28A05; 28A75

Acknowledgement

The author wishes to express her thanks to Professor W. Wilczyński for his helpful suggestions during the preparation of the paper.

  1. (Communicated by Tomasz Natkaniec)

References

[1] APPELL, J.: Insiemi ed operatori “piccoli” in analisi funzionale, Rend. Istit. Mat. Univ. Trieste 33 (2001), 127–199.Suche in Google Scholar

[2] APPELL, J.: A short story on microscopic sets, Atti Semin. Math. Fis. Univ. Modena Reggio Emilia 52 (2004), 229–233.Suche in Google Scholar

[3] APPELL, J.—D’ANIELLO , E.—VÄTH, M.: Some remarks on small sets, Ric. Mat. 50 (2001), 255–274.Suche in Google Scholar

[4] CZUDEK, K.—KWELA, A.—MROŻEK, N.—WOȽOSZYN, W.: Ideal-like properties of generalized microscopic sets, Acta Math. Hungar. 150 (2016), 269–285.10.1007/s10474-016-0659-1Suche in Google Scholar

[5] FILIPCZAK, M.—WAGNER-BOJAKOWSKA, E.: Remarks on small sets on the real line, Tatra Mt. Math. Publ. 42 (2009), 73–80.10.2478/v10127-009-0007-8Suche in Google Scholar

[6] HALPERIN, I.: Non-finite solutions of the equation fx+y = fx+fy Bull. Amer. Math. Soc. 2 (1951), 221–224.10.1090/S0002-9939-1951-0040387-4Suche in Google Scholar

[7] HORBACZEWSKA, G.: Microscopic sets with respect to sequences of functions Tatra Mt. Math. Publ. 58 (2014), 137–144.10.2478/tmmp-2014-0012Suche in Google Scholar

[8] HORBACZEWSKA, G.: General approach to microscopic-type sets J. Math. Anal. Appl. 461 (2018), 51–58.10.1016/j.jmaa.2018.01.007Suche in Google Scholar

[9] HORBACZEWSKA, G.—KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Properties of the σ-ideal of Microscopic Sets Chapter 20 in Traditional and present-day topics in real analysis, Ƚódź University Press, Ƚódź 2013.10.18778/7525-971-1.20Suche in Google Scholar

[10] KARASIŃSKA, A.: Duality Principle for some σ-ideals of subsets of the real line, Bull. Soc. Sci. Lett. Ƚódź Sér. Rech. Déform. 66(3) (2016), 72–77.Suche in Google Scholar

[11] KARASIŃSKA, A.—PASZKIEWICZ, A.—WAGNER-BOJAKOWSKA, E.: A generalization of the notion of microscopic sets, Lith. Math. J. 57(3) (2017), 319–330.10.1007/s10986-017-9363-2Suche in Google Scholar

[12] KARASIŃSKA, A.—POREDA, W.—WAGNER-BOJAKOWSKA, E.: Duality Principle for Microscopic Sets In: Real Functions, Density Topology and Related Topics, Ƚódź University Press, Ƚódź, 2011.Suche in Google Scholar

[13] KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Nowhere monotone functions and microscopic sets, Acta Math. Hungar. 120 (2008), 235–248.10.1007/s10474-008-7093-ySuche in Google Scholar

[14] KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Homeomorphisms of linear and planar sets of the first category into microscopic sets, Topology Appl. 159(7) (2012), 1894–1898.10.1016/j.topol.2011.11.055Suche in Google Scholar

[15] KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: On some problem of Sierpiński and Ruziewicz concerning the superposition of measurable functions. Microscopic Hamel basis, Tatra Mt. Math. Publ. 58 (2014), 91–99.10.2478/tmmp-2014-0008Suche in Google Scholar

[16] KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: BᐃI, I-saturated sets and Hamel basis, Tatra Mt. Math. Publ. 62 (2015), 143–150.10.1515/tmmp-2015-0011Suche in Google Scholar

[17] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser Verlag AG, Basel-Boston-Berlin, 2009.10.1007/978-3-7643-8749-5Suche in Google Scholar

[18] KWELA, A.: Additivity of the ideal of microscopic sets, Topology Appl. 204 (2016), 51–62.10.1016/j.topol.2016.01.031Suche in Google Scholar

[19] LUSIN, N.: Sur un problѐme de M. Baire, C. R. Acad. Sci. Paris 158 (1914), 1258–1261.Suche in Google Scholar

[20] MAHLO P.: Über Teilmengen des Kontinuums von dessen Mächtigkeit, Sitzungber. Sachs. Akad. Wiss. Leipzig 65 (1913), 28–315.Suche in Google Scholar

[21] PASZKIEWICZ, A.—WAGNER-BOJAKOWSKA, E.: Fubini property for microscopic sets, Tatra Mt. Math. Publ. 67 (2016), 1–7.10.1515/tmmp-2016-0012Suche in Google Scholar

[22] SIERPIŃSKI, W.: Sur la question de la mesurabilité de la base de Hamel, Fund. Math. 1 (1920), 105–111.10.4064/fm-1-1-105-111Suche in Google Scholar

[23] SIERPIŃSKI, W.: Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle, Fund. Math. 11 (1928), 302–304.10.4064/fm-11-1-302-303Suche in Google Scholar

[24] SIERPIŃSKI,W.: La base de M. Hamel et la propriété de Baire, Publ. Math. Univ. Belgrade 4 (1935), 221–225.Suche in Google Scholar

Received: 2019-11-26
Accepted: 2020-03-06
Published Online: 2020-12-10
Published in Print: 2020-12-16

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0436/html?lang=de
Button zum nach oben scrollen