Startseite Mathematik Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses

  • Danfeng Luo und Zhiguo Luo EMAIL logo
Veröffentlicht/Copyright: 27. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we mainly consider the existence and Hyers-Ulam stability of solutions for a class of fractional differential equations involving time-varying delays and non-instantaneous impulses. By the Krasnoselskii’s fixed point theorem, we present the new constructive existence results for the addressed equation. In addition, we deduce that the equations have Hyers-Ulam stable solutions by utilizing generalized Grönwall’s inequality. Some results in this literature are new and improve some early conclusions.


This work was supported by the National Natural Science Foundation of China (No.11471109).


  1. (Communicated by Michal Fečkan)

References

[1] Ali, Z.—Zada, A.—Shah, K.: Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl. 2018 (2018), Art. ID 175.10.1186/s13661-018-1096-6Suche in Google Scholar

[2] Derakhshan, M.—Ansari, A.: On Hyers-Ulam stability of fractional differential equations with Prabhakar derivatives, Analysis (Berlin) 38(1) (2018), 37–46.10.1515/anly-2017-0029Suche in Google Scholar

[3] Ding, Y.: Ulam-Hyers stability of fractional impulsive differential equations, J. Nonlinear Sci. Appl. 11(8) (2018), 953–959.10.22436/jnsa.011.08.02Suche in Google Scholar

[4] Fečkan, M.—Wang, J.: Periodic impulsive fractional differential equations, Adv. Nonlinear Anal. 8(1) (2019), 482–496.10.1515/anona-2017-0015Suche in Google Scholar

[5] Haq, F.—Shah, K.—Rahman, G.—Shahzad, M.: Hyers-Ulam stability to a class of fractional differential equations with boundary conditions, Int. J. Appl. Comput. Math. 3 (2017), S1135–S1147.10.1007/s40819-017-0406-5Suche in Google Scholar

[6] Hyers, D.: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.10.1073/pnas.27.4.222Suche in Google Scholar PubMed PubMed Central

[7] Khan, H.—Tunc, C.—Chen, W.—Khan, A.: Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with P-Laplacian operator, J. Appl. Anal. Comput. 8(4) (2018), 1211–1226.10.11948/2018.1211Suche in Google Scholar

[8] Khan, H.—Sun, H.—Chen, W.—Baleanu, D.: Inequalities for new class of fractional integral operators, J. Nonlinear Sci. Appl. 10(12) (2017), 6166–6176.10.22436/jnsa.010.12.04Suche in Google Scholar

[9] Khan, H.—Chen, W.—Sun, H.: Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space, Math. Methods Appl. Sci. 41(9) (2018), 3430–3440.10.1002/mma.4835Suche in Google Scholar

[10] Khan, H.—Li, Y.—Sun, H.—Khan, A.: Existence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, J. Nonlinear Sci. Appl. 10(10) (2017), 5219–5229.10.22436/jnsa.010.10.08Suche in Google Scholar

[11] Khan, H.—Li, Y.—Chen, W.—Baleanu, D.—Khan, A.: Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Bound. Value Probl. 2017 (2017), Art. ID 157.10.1186/s13661-017-0878-6Suche in Google Scholar

[12] Khan, H.—Khan, A.—Jarad, F.—Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Solitons Fractals 131 (2020), Art. ID 109477.10.1016/j.chaos.2019.109477Suche in Google Scholar

[13] Khan, A.—Khan, H.—Gómez-Aguilar, J. F.—Abdeljawad, T.: Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals 127 (2019), 422–427.10.1016/j.chaos.2019.07.026Suche in Google Scholar

[14] Khan, H.—Jarad, F.—Abdeljawad, T.—Khan, A.: A singular ABC-fractional differential equation with p-Laplacian operator, Chaos Solitons Fractals 129 (2019), 56–61.10.1016/j.chaos.2019.08.017Suche in Google Scholar

[15] Khan, H.—Li, Y.J.—Khan, A.—Khan, A.: Existence of solution for a fractional-order Lotka-Volterra reaction-diffusion model with Mittag-Leffler kernel, Math. Methods Appl. Sci. 42(9) (2019), 3377–3387.10.1002/mma.5590Suche in Google Scholar

[16] Khan, H.—Abdeljawad, T.— Aslam, M.—Khan, R.A.—Khan, A.: Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Difference Equ. 2019 (2019), Art. ID 104.10.1186/s13662-019-2054-zSuche in Google Scholar

[17] Khan, H.—Gómez-Aguilar, J. F.—Khan, A.—Khan, T. S.: Stability analysis for fractional order advection-reaction diffusion system, Physica A 521 (2019), 737–751.10.1016/j.physa.2019.01.102Suche in Google Scholar

[18] Khan, H.—Tunc, C.—Baleanu, D.—Khan, A.—Alkhazzan, A.: Inequalities for n-class of functions using the Saigo fractional integral operator, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM. 113(3) (2019), 2407–2420.10.1007/s13398-019-00624-5Suche in Google Scholar

[19] Khan, H.—Khan, A.—Abdeljawad, T.—Alkhazzan, A.: Existence results in Banach space for a nonlinear impulsive system, Adv. Difference Equ. 2019 (2019), Art. ID 18.10.1186/s13662-019-1965-zSuche in Google Scholar

[20] Khan, H.—Chen, W.—Khan, A.—Khan, T. S.—Al-Madlal, Q. M.: Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Difference Equ. 2018 (2018), Art. ID 455.10.1186/s13662-018-1899-xSuche in Google Scholar

[21] Khan, H.—Khan, A.—Chen, W.—Shah, K.: Stability analysis and a numerical scheme for fractional Klein-Gordon equations, Math. Methods Appl. Sci. 42(2) (2019), 723–732.10.1002/mma.5375Suche in Google Scholar

[22] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam, 2006.Suche in Google Scholar

[23] Kucche, K.—Shikhare, P.: Ulam-Hyers stability of integrodifferential equations in Banach spaces via Pachpatte’s inequality, Asian-Eur. J. Math. 11(4) (2018), Art. ID 1850062.10.1142/S1793557118500626Suche in Google Scholar

[24] Li, X.—Jiang, W.—Xiang, J.: Existence and Hyers-Ulam stability results for nonlinear fractional systems with coupled nonlocal initial conditions, J. Appl. Math. Comput. 50(1–2) (2016), 493–509.10.1007/s12190-015-0881-ySuche in Google Scholar

[25] Luo, D.—Luo, Z.: Existence and finite-time stability of solutions for a class of nonlinear fractional differential equations with time-varying delays and non-instantaneous impulses, Adv. Difference Equ. 2019 (2019), Art. ID 155.10.1186/s13662-019-2101-9Suche in Google Scholar

[26] Luo, D.—Shah, K.—Luo, Z.: On the novel Ulam–Hyers stability for a class of nonlinear ψ-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math. 16(5) (2019), # 112.10.1007/s00009-019-1387-xSuche in Google Scholar

[27] Miller, K. S.—Rose, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley: New York, 1993.Suche in Google Scholar

[28] Muslim, M.—Kumar, A.—Fečkan, M.: Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. 30 (2018), 204–213.10.1016/j.jksus.2016.11.005Suche in Google Scholar

[29] Phat, V. N.—Thanh, N. T.: New criteria for finite-time stability of nonlinear fractional-order delay systems: a Grönwall inequality approach, Appl. Math. Lett. 83 (2018), 169–175.10.1016/j.aml.2018.03.023Suche in Google Scholar

[30] Podlubny, I.—Thimann, K.V.: Fractional Differential Equation. Mathematics in Science and Engineering, Academic Press: New York, 1999.Suche in Google Scholar

[31] Shah, K.—Wang, J.—Khalil, H.— Khan, R. A.: Existence and numerical solutions of a coupled system of integral BVP for fractional differential equations, Adv. Difference Equ. 2018 (2018), Art. ID 149.10.1186/s13662-018-1603-1Suche in Google Scholar

[32] Sen, M. De la.: Hyers-Ulam-Rassias stability of functional differential systems with point and distributed delays, Discrete Dyn. Nat. Soc. (2015), Art. ID 492515.10.1155/2015/492515Suche in Google Scholar

[33] Ulam, S.: A Collection of Mathematical Problem, Interscience: New York, 1960.Suche in Google Scholar

[34] Vanterler, J.—Oliveira, E.: On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl. 20(3) (2018), #96.10.1007/s11784-018-0587-5Suche in Google Scholar

[35] Vanterler, J.—Oliveira, E.: Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett. 81 (2018), 50–56.10.1016/j.aml.2018.01.016Suche in Google Scholar

[36] Wang, J.— Lin, Z.: A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability, Math. Methods Appl. Sci. 38(5) (2015), 868–880.10.1002/mma.3113Suche in Google Scholar

[37] Wang, F.—Chen, D.—Zhang, X.—Wu, Y.: The existence and uniqueness theorem of the solution to a class of nonlinear fractional order system with time delay, Appl. Math. Lett. 53 (2016), 45–51.10.1016/j.aml.2015.10.001Suche in Google Scholar

[38] Wang, J.—Shah, K.—Ali, A.: Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci. 41(6) (2018), 2392–2402.10.1002/mma.4748Suche in Google Scholar

[39] Yang, Z.—Ren, W.—Xu, T.: Ulam-Hyers stability for matrix-valued fractional differential equations, J. Math. Inequal. 12(3) (2018), 665–675.10.7153/jmi-2018-12-51Suche in Google Scholar

[40] Yu, X.—Wang, J.—Zhang, Y.: On the β-Ulam-Hyers-Rassias stability of nonautonomous impulsive evolution equations, J. Appl. Math. Comput. 48 (2015), 461–475.10.1007/s12190-014-0813-2Suche in Google Scholar

[41] Zada, A.—Faisal, S.—Li, Y.: Hyers-Ulam-Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10(2) (2017), 504–510.10.22436/jnsa.010.02.15Suche in Google Scholar

[42] Zada, A.—Faisal, S.—Li, Y.: On the Hyers-Ulam stability of first-order impulsive delay differential equations, J. Funct. Spaces (2016), Art. ID 8164978.10.1155/2016/8164978Suche in Google Scholar

[43] Zhou, Y.—Wang, J.—Zhang, L.: Basic Theory of Fractional Differential Equations, World Scientific Publishing: London, 2017.10.1142/10238Suche in Google Scholar

Received: 2019-11-06
Accepted: 2020-01-12
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0427/html?lang=de
Button zum nach oben scrollen