Home Quadruple construction of decomposable double MS-algebras
Article
Licensed
Unlicensed Requires Authentication

Quadruple construction of decomposable double MS-algebras

  • Abd El-Mohsen Badawy EMAIL logo , Salah El-Din S. Hussein and Ahmed Gaber
Published/Copyright: September 27, 2020
Become an author with De Gruyter Brill

Abstract

This paper is devoted to the study of the class of decomposable double MS-algebras. Necessary and sufficient conditions for a decomposable MS-algebra to be a decomposable double MS-algebra are deduced. We construct decomposable double MS-algebras by means of decomposable MS-quadruples and we prove that there exists a one-to-one correspondence between decomposable double MS-algebras and decomposable MS-quadruples. Moreover, a construction of decomposable K2-algebras (Stone algebras) by means of K2-quadruples (Stone quadruples) is given. We conclude by introducing and characterizing isomorphisms of decomposable double MS-algebras in terms of decomposable MS-quadruples.

MSC 2010: Primary 06D05; 06D30

This research was presented at 2nd International Conference for Mathematics and Its Applications (ICMA18) that held in Cairo, Egypt, 5–7 April, 2018.


Acknowledgement

We thank the editor and the referee for their valuable comments and suggestions for improving the paper.

  1. (Communicated by Jan Kühr)

References

[1] Badawy, A.—Guffova D.—Haviar, M.: Triple construction of decomposable MS-algebras, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51(2) (2012), 53–65.Search in Google Scholar

[2] Badawy, A.—El-Fawal, R.: Homomorphisms and subalgebras of decomposable MS-algebra, J. Egyptian Math. Soc. 25(2) (2017), 119–124.10.1016/j.joems.2016.10.001Search in Google Scholar

[3] Badawy, A.—Atallah, M.: MS-intervals of an MS-algebra, Hacet. J. Math. Stat. 48(5) (2019), 1479–1487.10.15672/HJMS.2018.590Search in Google Scholar

[4] Badawy, A.: Balanced factor congruences of double MS-algebras, J. Egyptian Math. Soc. 27(6) (2019), 1–15.10.1186/s42787-019-0008-ySearch in Google Scholar

[5] Badawy, A.: dL-Filters of principal MS-algebras, J. Egyptian Math. Soc. 23 (2015), 463–469.10.1016/j.joems.2014.12.008Search in Google Scholar

[6] Badawy, A.: Regular double MS-algebras, Appl. Math. Inf. Sci. 11(2) (2017), 115–122.10.18576/amis/110114Search in Google Scholar

[7] Badawy, A.: Extensions of the Glivenko-type congruences on a Stone lattice, Math. Methods Appl. Sci. 41(15) (2018), 5719–5732.10.1002/mma.4492Search in Google Scholar

[8] Badawy, A.: Construction of core regular double MS-algebras, Filomat 34(1) (2018), 35–50.10.2298/FIL2001035BSearch in Google Scholar

[9] Badawy, A.—Gaber, A.: Complete decomposable MS-algebras, Egyptian Math. Soc. 72 (2019), Art. ID 23.10.1186/s42787-019-0027-8Search in Google Scholar

[10] Badawy, A.—El-Fawal, R.: Closure filters of decomposable MS-algebras, Southeast Asian Bull. Math. 44 (2020), 177–194.Search in Google Scholar

[11] Badawy, A.: Congruences and De Morgan filters of decomposable MS-algebras, Southeast Asian Bull. Math. 43 (2019), 13–25.Search in Google Scholar

[12] Badawy, A.—Sambasiva Rao, M.: Clouser ideals of MS-algebras, Chamchuri J. Math. 6 (2014), 31–46.Search in Google Scholar

[13] Gaber, A.—Badawy, A.—Hussein, S.: On decomposable MS-algebras, Ital. J. Pure Appl. Math. 43 (2020), 617–626.Search in Google Scholar

[14] Blyth, T. S.—Varlet, J. C.: Sur la construction de certaines MS-algebres, Port. Math. 39 (1980), 489–496.Search in Google Scholar

[15] Blyth, T. S.—Varlet, J. C.: Corrigendum sur la construction de certaines MS-algebres, Port. Math. 42 (1983), 469–471.Search in Google Scholar

[16] Blyth, T. S.—Varlet, J. C.: On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A (1983), 301–308.10.1017/S0308210500015663Search in Google Scholar

[17] Blyth, T. S.—Varlet, J. C.: Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh 95A (1983), 157–169.10.1017/S0308210500015869Search in Google Scholar

[18] Blyth, T. S.—Varlet, J. C.: Ockham Algebras, University Press, London, Oxford 1994.10.1093/oso/9780198599388.001.0001Search in Google Scholar

[19] Blyth, T. S.—Varlet, J. C.: Double MS-algebras, Proc. Roy. Soc. Edinburgh 94 (1984), 157–169.10.1017/S0308210500025543Search in Google Scholar

[20] Congwen, L.: The class of double MS-algebras satisfying the complement property, Bulletin de la Société des Sciences de Liège, 70(1) (2001), 51–59.Search in Google Scholar

[21] Haviar, M.: On certain construction of MS-algebras. Port. Math. 51 (1994), 71–83.Search in Google Scholar

[22] Haviar, M.: Construction and affine completeness of principal p-algebras, Tatra Mt. Math. Publ. 5 (1995), 217–228.Search in Google Scholar

[23] Haviar, M.: Affine complete algebras abstracting double Stone and Kleene algebras, Acta Univ. M. Belii Ser. Math. 4 (1996), 39–52.Search in Google Scholar

[24] Katriňák, T.: A new proof of the construction theorem for Stone agebras, Proc. Amer. Math. Soc. 40 (1973), 75–78.10.1090/S0002-9939-1973-0316335-0Search in Google Scholar

[25] Katriňák, T.: Construction of modular double S-algebras, Algebra Universalis 8 (1978), 15–22.10.1007/BF02485365Search in Google Scholar

Received: 2018-10-22
Accepted: 2020-03-02
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0412/html
Scroll to top button